February  2017, 14(1): 143-164. doi: 10.3934/mbe.2017010

Mathematical modeling of liver fibrosis

1. 

Mathematical Biosciences Institute & Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA

2. 

Department of Mathematics, The Penn State University, University Park, PA 16802, USA

Received  October 08, 2015 Accepted  April 22, 2016 Published  October 2016

Fibrosis is the formation of excessive fibrous connective tissue in an organ or tissue, which occurs in reparative process or in response to inflammation. Fibrotic diseases are characterized by abnormal excessive deposition of fibrous proteins, such as collagen, and the disease is most commonly progressive, leading to organ disfunction and failure. Although fibrotic diseases evolve in a similar way in all organs, differences may occur as a result of structure and function of the specific organ. In liver fibrosis, the gold standard for diagnosis and monitoring the progression of the disease is biopsy, which is invasive and cannot be repeated frequently. For this reason there is currently a great interest in identifying non-invasive biomarkers for liver fibrosis. In this paper, we develop for the first time a mathematical model of liver fibrosis by a system of partial differential equations. We use the model to explore the efficacy of potential and currently used drugs aimed at blocking the progression of liver fibrosis. We also use the model to develop a diagnostic tool based on a combination of two biomarkers.

Citation: Avner Friedman, Wenrui Hao. Mathematical modeling of liver fibrosis. Mathematical Biosciences & Engineering, 2017, 14 (1) : 143-164. doi: 10.3934/mbe.2017010
References:
[1]

B. C. A. and R. J. -P., Cytokines and Cytokine Receptors: Physiology and Pathological Disorders CRC Press. Google Scholar

[2]

L. A. Adams, Biomarkers of liver fibrosis, J. Gastroenterol Hepatol, 26 (2011), 802-809.  doi: 10.1111/j.1440-1746.2010.06612.x.  Google Scholar

[3]

S. AlbeirotiK. AyasoufiD. R. HillB. Shen and C. A. de la Motte, Platelet hyaluronidase-2: An enzyme that translocates to the surface upon activation to function in extracellular matrix degradation, Blood, 125 (2015), 1460-1469.  doi: 10.1182/blood-2014-07-590513.  Google Scholar

[4]

A. Baranova, P. Lal, A. Birerdinc and Z. M. Younossi, Non-invasive markers for hepatic fibrosis BMC Gastroenterol 11 (2011), 91. doi: 10.1186/1471-230X-11-91.  Google Scholar

[5]

L. Barron and T. A. Wynn, Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages, Am. J. Physiol. Gastrointest. Liver Physiol., 300 (2011), G723-728.  doi: 10.1152/ajpgi.00414.2010.  Google Scholar

[6]

D. C. Baumgart and S. R. Carding, Inflammatory bowel disease: Cause and immunobiology, Lancet, 369 (2007), 1627-1640.  doi: 10.1016/S0140-6736(07)60750-8.  Google Scholar

[7]

K. D. BentsenJ. H. HenriksenS. BoesbyK. Horslev-Petersen and I. Lorenzen, Hepatic and renal extraction of circulating type Ⅲ procollagen amino-terminal propeptide and hyaluronan in pig, J. Hepatol., 9 (1989), 177-183.  doi: 10.1016/0168-8278(89)90048-2.  Google Scholar

[8]

C. E. Boorsma, C. Draijer and B. N. Melgert, Macrophage heterogeneity in respiratory diseases Mediators Inflamm. 2013 (2013), 769214, 19pp. doi: 10.1155/2013/769214.  Google Scholar

[9]

A. Camelo, R. Dunmore, M. A. Sleeman and D. L. Clarke, The epithelium in idiopathic pulmonary fibrosis: breaking the barrier Front Pharmacol 4 (2014), 173. doi: 10.3389/fphar.2013.00173.  Google Scholar

[10]

A. Cequera and M. C. Garcia de Leon Mendez, [Biomarkers for liver fibrosis: Advances, advantages and disadvantages], Rev Gastroenterol Mex, 79 (2014), 187-199.  doi: 10.1016/j.rgmxen.2014.07.001.  Google Scholar

[11]

C. Chizzolini, T cells, B cells, and polarized immune response in the pathogenesis of fibrosis and systemic sclerosis, Curr Opin Rheumatol, 20 (2008), 707-712.  doi: 10.1097/BOR.0b013e32830c45ae.  Google Scholar

[12]

D. L. Clarke, A. M. Carruthers, T. Mustelin and L. A. Murray, Matrix regulation of idiopathic pulmonary fibrosis: The role of enzymes Fibrogenesis Tissue Repair 6 (2013), 20. doi: 10.1186/1755-1536-6-20.  Google Scholar

[13]

M. K. ConnollyA. S. BedrosianJ. Mallen-St ClairA. P. MitchellJ. IbrahimA. StroudH. L. PachterD. Bar-SagiA. B. Frey and G. Miller, In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha, J. Clin. Invest., 119 (2009), 3213-3225.   Google Scholar

[14]

Z. D. DaniilE. PapageorgiouA. KoutsokeraK. Kostikas and T. Kiropoulos, Serum levels of oxidative stress as a marker of disease severity in idiopathic pulmonary fibrosis, Pulm Pharmacol Ther, 21 (2008), 26-31.  doi: 10.1016/j.pupt.2006.10.005.  Google Scholar

[15]

J. DayA. Friedman and L. S. Schlesinger, Modeling the immune rheostat of macrophages in the lung in response to infection, Proc. Natl. Acad. Sci. U.S.A., 106 (2009), 11246-11251.   Google Scholar

[16]

P. DeepakS. KumarD. Kishore and A. Acharya, IL-13 from Th2-type cells suppresses induction of antigen-specific Th1 immunity in a T-cell lymphoma, Int. Immunol., 22 (2010), 53-63.  doi: 10.1093/intimm/dxp114.  Google Scholar

[17]

J. A. Dranoff and R. G. Wells, Portal fibroblasts: Underappreciated mediators of biliary fibrosis, Hepatology, 51 (2010), 1438-1444.  doi: 10.1002/hep.23405.  Google Scholar

[18]

J. S. Duffield, Macrophages and immunologic inflammation of the kidney, Semin. Nephrol., 30 (2010), 234-254.  doi: 10.1016/j.semnephrol.2010.03.003.  Google Scholar

[19]

H. L. Fallatah, Noninvasive biomarkers of liver fibrosis: An overview Adva. in Hepa. 2014 (2014), Article ID 357287, 15pp. doi: 10.1155/2014/357287.  Google Scholar

[20]

J. M. FanY. Y. NgP. A. HillD. J. Nikolic-PatersonW. MuR. C. Atkins and H. Y. Lan, Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro, Kidney Int., 56 (1999), 1455-1467.   Google Scholar

[21]

S. Fichtner-FeiglW. StroberK. KawakamiR. K. Puri and A. Kitani, IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis, Nat. Med., 12 (2006), 99-106.   Google Scholar

[22]

S. L. Friedman, Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver, Physiol. Rev., 88 (2008), 125-172.  doi: 10.1152/physrev.00013.2007.  Google Scholar

[23]

R. M. GrecoJ. A. Iocono and H. P. Ehrlich, Hyaluronic acid stimulates human fibroblast proliferation within a collagen matrix, J. Cell. Physiol., 177 (1998), 465-473.  doi: 10.1002/(SICI)1097-4652(199812)177:3<465::AID-JCP9>3.0.CO;2-5.  Google Scholar

[24]

J. GuechotL. SerfatyA. M. BonnandO. ChazouilleresR. E. Poupon and R. Poupon, Prognostic value of serum hyaluronan in patients with compensated HCV cirrhosis, J. Hepatol., 32 (2000), 447-452.  doi: 10.1016/S0168-8278(00)80396-7.  Google Scholar

[25]

M. F. HadiE. A. SanderJ. W. Ruberti and V. H. Barocas, Simulated remodeling of loaded collagen networks via strain-dependent enzymatic degradation and constant-rate fiber growth, Mech Mater, 44 (2012), 72-82.  doi: 10.1016/j.mechmat.2011.07.003.  Google Scholar

[26]

P. Halfon, M. Bourliere, G. Penaranda, R. Deydier, C. Renou, D. Botta-Fridlund, A. Tran, I. Portal, I. Allemand, A. Rosenthal-Allieri and D. Ouzan, Accuracy of hyaluronic acid level for predicting liver fibrosis stages in patients with hepatitis C virus, Comp Hepatol 4 (2005), 6. Google Scholar

[27]

L. Hammerich and F. Tacke, Role of gamma-delta T cells in liver inflammation and fibrosis, World J Gastrointest Pathophysiol, 5 (2014), 107-113.   Google Scholar

[28]

A. HancockL. ArmstrongR. Gama and A. Millar, Production of interleukin 13 by alveolar macrophages from normal and fibrotic lung, Am. J. Respir. Cell Mol. Biol., 18 (1998), 60-65.  doi: 10.1165/ajrcmb.18.1.2627.  Google Scholar

[29]

W. HaoE. D. Crouser and A. Friedman, Mathematical model of sarcoidosis, Proc. Natl. Acad. Sci. U.S.A., 111 (2014), 16065-16070.  doi: 10.1073/pnas.1417789111.  Google Scholar

[30]

W. Hao and A. Friedman, The LDL-HDL Profile Determines the risk of atherosclerosis: a Mathematical Model PLoS ONE 9 (2014), e90497. doi: 10.1371/journal.pone.0090497.  Google Scholar

[31]

W. Hao, A. Friedman and C. Marsh, a mathematical model of idiopathic pulmonary fibrosis Plos One 10 (2015), e0135097. doi: 10.1371/journal.pone.0135097.  Google Scholar

[32]

W. HaoB. H. Rovin and A. Friedman, Mathematical model of renal interstitial fibrosis, Proc. Natl. Acad. Sci. U.S.A., 111 (2014), 14193-14198.  doi: 10.1073/pnas.1413970111.  Google Scholar

[33]

W. Hao, L. S. Schlesinger and A. Friedman, Modeling granulomas in response to infection in the lung PLoS ONE 11 (2016), e0148738. doi: 10.1371/journal.pone.0148738.  Google Scholar

[34]

E. L. Herzog and R. Bucala, Fibrocytes in health and disease, Exp. Hematol., 38 (2010), 548-556.  doi: 10.1016/j.exphem.2010.03.004.  Google Scholar

[35]

K. IyonagaM. TakeyaN. SaitaO. SakamotoT. YoshimuraM. Ando and K. Takahashi, Monocyte chemoattractant protein-1 in idiopathic pulmonary fibrosis and other interstitial lung diseases, Hum. Pathol., 25 (1994), 455-463.  doi: 10.1016/0046-8177(94)90117-1.  Google Scholar

[36]

C. JakubzickE. S. ChoiB. H. JoshiM. P. Keane and S. L. Kunkel, Therapeutic attenuation of pulmonary fibrosis via targeting of IL-4-and IL-13-responsive cells, J. Immunol., 171 (2003), 2684-2693.  doi: 10.4049/jimmunol.171.5.2684.  Google Scholar

[37]

C. A. Janeway, T. P., W. M. and M. J. Shlomchik, Immunobiology, 5th edition, The Immune System in Health and Disease 2001. Google Scholar

[38]

R. Khan and R. Sheppard, Fibrosis in heart disease: Understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia, Immunology, 118 (2006), 10-24.  doi: 10.1111/j.1365-2567.2006.02336.x.  Google Scholar

[39]

N. Kikuchi, Y. Ishii, Y. Morishima, Y. Yageta, N. Haraguchi, K. Itoh, M. Yamamoto and N. Hizawa, Nrf2 protects against pulmonary fibrosis by regulating the lung oxidant level and Th1/Th2 balance Respir. Res. 11 (2010), 31. doi: 10.1186/1465-9921-11-31.  Google Scholar

[40]

C. R. Kliment and T. D. Oury, Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis, Free Radic. Biol. Med., 49 (2010), 707-717.  doi: 10.1016/j.freeradbiomed.2010.04.036.  Google Scholar

[41]

P. KongP. Christia and N. G. Frangogiannis, The pathogenesis of cardiac fibrosis, Cell. Mol. Life Sci., 71 (2014), 549-574.  doi: 10.1007/s00018-013-1349-6.  Google Scholar

[42]

T. Lan, T. Kisseleva and D. A. Brenner, Deficiency of NOX1 or NOX4 Prevents Liver inflammation and Fibrosis in Mice through inhibition of Hepatic Stellate cell activation PLoS ONE 10 (2015), e0129743. doi: 10.1371/journal.pone.0129743.  Google Scholar

[43]

A. Leask, TGFbeta, cardiac fibroblasts, and the fibrotic response, Cardiovasc. Res., 74 (2007), 207-212.   Google Scholar

[44]

A. Leask and D. J. Abraham, TGF-beta signaling and the fibrotic response, FASEB J., 18 (2004), 816-827.   Google Scholar

[45]

B. Lee, X. Zhou, K. Riching, K. W. Eliceiri, P. J. Keely, S. A. Guelcher, A. M. Weaver and Y. Jiang, a three-dimensional computational model of collagen network mechanics PLoS ONE 9 (2014), e111896. doi: 10.1371/journal.pone.0111896.  Google Scholar

[46]

C. Liedtke, T. Luedde, T. Sauerbruch, D. Scholten, K. Streetz, F. Tacke, R. Tolba, C. Trautwein, J. Trebicka and R. Weiskirchen, Experimental liver fibrosis research: Update on animal models, legal issues and translational aspects Fibrogenesis Tissue Repair 6 (2013), 19. doi: 10.1186/1755-1536-6-19.  Google Scholar

[47]

P. Lijnen and V. Petrov, Transforming growth factor-beta 1-induced collagen production in cultures of cardiac fibroblasts is the result of the appearance of myofibroblasts, Methods Find Exp Clin Pharmacol, 24 (2002), 333-344.  doi: 10.1358/mf.2002.24.6.693065.  Google Scholar

[48]

L. LiuP. KouQ. ZengG. PeiY. LiH. LiangG. Xu and S. Chen, CD4+ T Lymphocytes, especially Th2 cells, contribute to the progress of renal fibrosis, Am. J. Nephrol., 36 (2012), 386-396.  doi: 10.1159/000343283.  Google Scholar

[49]

T. LiuX. WangM. A. KarsdalD. J. Leeming and F. Genovese, Molecular serum markers of liver fibrosis, Biomark Insights, 7 (2012), 105-117.   Google Scholar

[50]

Y. LiuX. M. WenE. L. LuiS. L. FriedmanW. CuiN. P. HoL. LiT. YeS. T. Fan and H. Zhang, Therapeutic targeting of the PDGF and TGF-beta-signaling pathways in hepatic stellate cells by PTK787/ZK22258, Lab. Invest., 89 (2009), 1152-1160.   Google Scholar

[51]

S. Lo ReD. Lison and F. Huaux, CD4+ T lymphocytes in lung fibrosis: Diverse subsets, diverse functions, J. Leukoc. Biol., 93 (2013), 499-510.   Google Scholar

[52]

N. J. LomasK. L. WattsK. M. AkramN. R. Forsyth and M. A. Spiteri, Idiopathic pulmonary fibrosis: immunohistochemical analysis provides fresh insights into lung tissue remodelling with implications for novel prognostic markers, Int J Clin Exp Pathol, 5 (2012), 58-71.   Google Scholar

[53]

P. LuK. TakaiV. M. Weaver and Z. Werb, Extracellular matrix degradation and remodeling in development and disease, Cold Spring Harb Perspect Biol, 3 (2011), 1-25.  doi: 10.1101/cshperspect.a005058.  Google Scholar

[54]

I. G. LuzinaN. W. ToddA. T. Iacono and S. P. Atamas, roles of T lymphocytes in pulmonary fibrosis, J. Leukoc. Biol., 83 (2008), 237-244.  doi: 10.1189/jlb.0707504.  Google Scholar

[55]

K. J. Maloy and F. Powrie, Intestinal homeostasis and its breakdown in inflammatory bowel disease, Nature, 474 (2011), 298-306.  doi: 10.1038/nature10208.  Google Scholar

[56]

S. MarinoI. B. HogueC. J. Ray and D. E. Kirschner, a methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178-196.  doi: 10.1016/j.jtbi.2008.04.011.  Google Scholar

[57]

D. I. McRitchieN. IsowaJ. D. EdelsonA. M. Xavier and L. Cai, Production of tumour necrosis factor alpha by primary cultured rat alveolar epithelial cells, Cytokine, 12 (2000), 644-654.   Google Scholar

[58]

D. L. MotolaP. CaravanR. T. Chung and B. C. Fuchs, Noninvasive biomarkers of Liver Fibrosis: Clinical applications and Future Directions, Curr Pathobiol Rep, 2 (2014), 245-256.  doi: 10.1007/s40139-014-0061-z.  Google Scholar

[59]

L. A. MurrayQ. ChenM. S. KramerD. P. HessonR. L. Argentieri and et. al, TGF-beta driven lung fibrosis is macrophage dependent and blocked by Serum amyloid P, Int. J. Biochem. Cell Biol., 43 (2011), 154-162.  doi: 10.1016/j.biocel.2010.10.013.  Google Scholar

[60]

S. NakatsujiJ. Yamate and S. Sakuma, Macrophages, myofibroblasts, and extracellular matrix accumulation in interstitial fibrosis of chronic progressive nephropathy in aged rats, Vet. Pathol., 35 (1998), 352-360.  doi: 10.1177/030098589803500504.  Google Scholar

[61]

Y. E. NassefM. M. ShadyE. M. Galal and M. A. Hamed, Performance of diagnostic biomarkers in predicting liver fibrosis among hepatitis C virus-infected Egyptian children, Mem. Inst. Oswaldo Cruz, 108 (2013), 887-893.  doi: 10.1590/0074-0276130139.  Google Scholar

[62]

Q.H. NieY. F. ZhangY. M. XieX. D. LuoB. ShaoJ. Li and Y. X. Zhou, Correlation between TIMP-1 expression and liver fibrosis in two rat liver fibrosis models, World J. Gastroenterol., 12 (2006), 3044-3049.  doi: 10.3748/wjg.v12.i19.3044.  Google Scholar

[63]

D. J. Nikolic-Paterson, CD4+ T cells: A potential player in renal fibrosis, Kidney Int., 78 (2010), 333-335.  doi: 10.1038/ki.2010.182.  Google Scholar

[64]

A. PellicoroP. RamachandranJ. P. Iredale and J. A. Fallowfield, Liver fibrosis and repair: Immune regulation of wound healing in a solid organ, Nat. Rev. Immunol., 14 (2014), 181-194.  doi: 10.1038/nri3623.  Google Scholar

[65]

M. PerepelyukM. TerajimaA. Y. WangP. C. GeorgesP. A. JanmeyM. Yamauchi and R. G. Wells, Hepatic stellate cells and portal fibroblasts are the major cellular sources of collagens and lysyl oxidases in normal liver and early after injury, Am. J. Physiol. Gastrointest. Liver Physiol., 304 (2013), G605-g614.  doi: 10.1152/ajpgi.00222.2012.  Google Scholar

[66]

M. P. RastaldiF. FerrarioL. GiardinoG. Dell'AntonioC. GrilloP. GrilloF. StrutzG. A. MullerG. Colasanti and G. D'Amico, Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies, Kidney Int., 62 (2002), 137-146.  doi: 10.1046/j.1523-1755.2002.00430.x.  Google Scholar

[67]

E. F. RedenteR. C. KeithW. JanssenP. M. HensonL. A. OrtizG. P. DowneyD. L. Bratton and D. W. Riches, Tumor necrosis factor-alpha accelerates the resolution of established pulmonary fibrosis in mice by targeting profibrotic lung macrophages, Am. J. Respir. Cell Mol. Biol., 50 (2014), 825-837.   Google Scholar

[68]

S. D. RicardoH. van Goor and A. A. Eddy, Macrophage diversity in renal injury and repair, J. Clin. Invest., 118 (2008), 3522-3530.  doi: 10.1172/JCI36150.  Google Scholar

[69]

J. RosenbloomS. V. Castro and S. A. Jimenez, Narrative review: Fibrotic diseases: Cellular and molecular mechanisms and novel therapies, Ann. Intern. Med., 152 (2010), 159-166.  doi: 10.7326/0003-4819-152-3-201002020-00007.  Google Scholar

[70]

N. Sakai and A. M. Tager, Fibrosis of two: Epithelial cell-fibroblast interactions in pulmonary fibrosis, Biochim. Biophys. Acta, 1832 (2013), 911-921.  doi: 10.1016/j.bbadis.2013.03.001.  Google Scholar

[71]

M. Selman and A. Pardo, role of epithelial cells in idiopathic pulmonary fibrosis: From innocent targets to serial killers, Proc. Am. Thorac. Soc., 3 (2006), 364-372.  doi: 10.1513/pats.200601-003TK.  Google Scholar

[72]

M. Selman and A. Pardo, revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis. an integral model, Am. J. Respir. Crit. Care Med., 189 (2014), 1161-1172.  doi: 10.1164/rccm.201312-2221PP.  Google Scholar

[73]

G. Shiha, Serum hyaluronic acid: A promising marker of hepatic fibrosis in chronic hepatitis B, Saudi J Gastroenterol, 14 (2008), 161-162.  doi: 10.4103/1319-3767.43272.  Google Scholar

[74]

Y. ShimizuH. KuwabaraA. OnoS. HiguchiT. HisadaK. DobashiM. UtsugiY. Mita and M. Mori, Intracellular Th1/Th2 balance of pulmonary CD4(+) T cells in patients with active interstitial pneumonia evaluated by serum KL-6, Immunopharmacol Immunotoxicol, 28 (2006), 295-304.  doi: 10.1080/08923970600809389.  Google Scholar

[75]

M. S. Simonson and F. Ismail-Beigi, Endothelin-1 increases collagen accumulation in renal mesangial cells by stimulating a chemokine and cytokine autocrine signaling loop, J. Biol. Chem., 286 (2011), 11003-11008.  doi: 10.1074/jbc.M110.190793.  Google Scholar

[76]

F. Strutz and M. Zeisberg, renal fibroblasts and myofibroblasts in chronic kidney disease, J. Am. Soc. Nephrol., 17 (2006), 2992-2998.  doi: 10.1681/ASN.2006050420.  Google Scholar

[77]

F. StrutzM. ZeisbergA. RenziehausenB. RaschkeV. BeckerC. van Kooten and G. Muller, TGF-beta 1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor (FGF-2), Kidney Int., 59 (2001), 579-592.   Google Scholar

[78]

F. Tacke and H. W. Zimmermann, Macrophage heterogeneity in liver injury and fibrosis, J. Hepatol., 60 (2014), 1090-1096.  doi: 10.1016/j.jhep.2013.12.025.  Google Scholar

[79]

N. TakemotoN. Koyano-NakagawaT. YokotaN. AraiS. Miyatake and K. Arai, Th2-specific DNase I-hypersensitive sites in the murine IL-13 and IL-4 intergenic region, Int. Immunol., 10 (1998), 1981-1985.  doi: 10.1093/intimm/10.12.1981.  Google Scholar

[80]

R. J. Tan and Y. Liu, Macrophage-derived TGF-beta in renal fibrosis: not a macro-impact after all, Am. J. Physiol. Renal Physiol., 305 (2013), F821-822.   Google Scholar

[81]

T. T. TapmeierA. FearnK. BrownP. ChowdhuryS. H. SacksN. S. Sheerin and W. Wong, Pivotal role of CD4+ T cells in renal fibrosis following ureteric obstruction, Kidney Int., 78 (2010), 351-362.  doi: 10.1038/ki.2010.177.  Google Scholar

[82]

A. L. Tatler and G. Jenkins, TGF-beta activation and lung fibrosis, Proc. Am. Thorac. Soc., 9 (2012), 130-136.   Google Scholar

[83]

S. S. VeidalM. A. KarsdalE. VassiliadisA. NawrockiM. R. LarsenQ. H. NguyenP. HagglundY. LuoQ. ZhengB. Vainer and D. J. Leeming, MMP mediated degradation of type Ⅵ collagen is highly associated with liver fibrosis-identification and validation of a novel biochemical marker assay, PLoS ONE, 6 (2011), e24753.  doi: 10.1371/journal.pone.0024753.  Google Scholar

[84]

R. VenkayyaM. LamM. WillkomG. Grunig and D. B. Corry, The Th2 lymphocyte products IL-4 and IL-13 rapidly induce airway hyperresponsiveness through direct effects on resident airway cells, Am. J. Respir. Cell Mol. Biol., 26 (2002), 202-208.  doi: 10.1165/ajrcmb.26.2.4600.  Google Scholar

[85]

T. Veremeyko, S. Siddiqui, I. Sotnikov, A. Yung and E. D. Ponomarev, IL-4/IL-13-dependent and independent expression of mir-124 and its contribution to M2 phenotype of monocytic cells in normal conditions and during allergic inflammation PLoS ONE 8 (2013), e81774. doi: 10.1371/journal.pone.0081774.  Google Scholar

[86]

M. A. VernonK. J. Mylonas and J. Hughes, Macrophages and renal fibrosis, Semin. Nephrol., 30 (2010), 302-317.  doi: 10.1016/j.semnephrol.2010.03.004.  Google Scholar

[87]

T. WadaK. FuruichiN. SakaiY. IwataK. KitagawaY. IshidaT. KondoH. HashimotoY. IshiwataN. MukaidaN. TomosugiK. MatsushimaK. Egashira and H. Yokoyama, Gene therapy via blockade of monocyte chemoattractant protein-1 for renal fibrosis, J. Am. Soc. Nephrol., 15 (2004), 940-948.  doi: 10.1097/01.ASN.0000120371.09769.80.  Google Scholar

[88]

T. WadaH. YokoyamaK. Matsushima and K. Kobayashi, Monocyte chemoattractant protein-1: does it play a role in diabetic nephropathy?, Nephrol. Dial. Transplant., 18 (2003), 457-459.  doi: 10.1093/ndt/18.3.457.  Google Scholar

[89]

L. Wei, Immunological aspect of cardiac remodeling: T lymphocyte subsets in inflammation-mediated cardiac fibrosis, Exp. Mol. Pathol., 90 (2011), 74-78.  doi: 10.1016/j.yexmp.2010.10.004.  Google Scholar

[90]

X. WengL. WangJ. WangY. HuH. DuC. XuY. XingX. LiJ. Xiao and Q. Zhang, Grain number, plant height, and heading date7 is a central regulator of growth, development, and stress response, Plant Physiol., 164 (2014), 735-747.  doi: 10.1104/pp.113.231308.  Google Scholar

[91]

T. A. Wynn, Fibrotic disease and the T(H)1/T(H)2 paradigm, Nat. Rev. Immunol., 4 (2004), 583-594.   Google Scholar

[92]

L. XiaoY. DuY. ShenY. HeH. Zhao and Z. Li, TGF-beta 1 induced fibroblast proliferation is mediated by the FGF-2/ErK pathway, Front Biosci (Landmark Ed), 17 (2012), 2667-2674.  doi: 10.2741/4077.  Google Scholar

[93]

A. YatesR. Callard and J. Stark, Combining cytokine signalling with T-bet and GaTa-3 regulation in Th1 and Th2 differentiation: a model for cellular decision-making, J. Theor. Biol., 231 (2004), 181-196.  doi: 10.1016/j.jtbi.2004.06.013.  Google Scholar

[94]

H. ZhaoY. DongX. TianT. K. TanZ. LiuY. ZhaoY. ZhangD. C. h. Harris and G. Zheng, Matrix metalloproteinases contribute to kidney fibrosis in chronic kidney diseases, World J Nephrol, 2 (2013), 84-89.  doi: 10.5527/wjn.v2.i3.84.  Google Scholar

[95]

J. Zhao, N. Tang, K. Wu, W. Dai, C. Ye, J. Shi, J. Zhang, B. Ning, X. Zeng and Y. Lin, Mir-21 simultaneously regulates ErK1 signaling in HSC activation and hepatocyte EMT in hepatic fibrosis PLoS ONE 9 (2014), e108005. doi: 10.1371/journal.pone.0108005.  Google Scholar

show all references

References:
[1]

B. C. A. and R. J. -P., Cytokines and Cytokine Receptors: Physiology and Pathological Disorders CRC Press. Google Scholar

[2]

L. A. Adams, Biomarkers of liver fibrosis, J. Gastroenterol Hepatol, 26 (2011), 802-809.  doi: 10.1111/j.1440-1746.2010.06612.x.  Google Scholar

[3]

S. AlbeirotiK. AyasoufiD. R. HillB. Shen and C. A. de la Motte, Platelet hyaluronidase-2: An enzyme that translocates to the surface upon activation to function in extracellular matrix degradation, Blood, 125 (2015), 1460-1469.  doi: 10.1182/blood-2014-07-590513.  Google Scholar

[4]

A. Baranova, P. Lal, A. Birerdinc and Z. M. Younossi, Non-invasive markers for hepatic fibrosis BMC Gastroenterol 11 (2011), 91. doi: 10.1186/1471-230X-11-91.  Google Scholar

[5]

L. Barron and T. A. Wynn, Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages, Am. J. Physiol. Gastrointest. Liver Physiol., 300 (2011), G723-728.  doi: 10.1152/ajpgi.00414.2010.  Google Scholar

[6]

D. C. Baumgart and S. R. Carding, Inflammatory bowel disease: Cause and immunobiology, Lancet, 369 (2007), 1627-1640.  doi: 10.1016/S0140-6736(07)60750-8.  Google Scholar

[7]

K. D. BentsenJ. H. HenriksenS. BoesbyK. Horslev-Petersen and I. Lorenzen, Hepatic and renal extraction of circulating type Ⅲ procollagen amino-terminal propeptide and hyaluronan in pig, J. Hepatol., 9 (1989), 177-183.  doi: 10.1016/0168-8278(89)90048-2.  Google Scholar

[8]

C. E. Boorsma, C. Draijer and B. N. Melgert, Macrophage heterogeneity in respiratory diseases Mediators Inflamm. 2013 (2013), 769214, 19pp. doi: 10.1155/2013/769214.  Google Scholar

[9]

A. Camelo, R. Dunmore, M. A. Sleeman and D. L. Clarke, The epithelium in idiopathic pulmonary fibrosis: breaking the barrier Front Pharmacol 4 (2014), 173. doi: 10.3389/fphar.2013.00173.  Google Scholar

[10]

A. Cequera and M. C. Garcia de Leon Mendez, [Biomarkers for liver fibrosis: Advances, advantages and disadvantages], Rev Gastroenterol Mex, 79 (2014), 187-199.  doi: 10.1016/j.rgmxen.2014.07.001.  Google Scholar

[11]

C. Chizzolini, T cells, B cells, and polarized immune response in the pathogenesis of fibrosis and systemic sclerosis, Curr Opin Rheumatol, 20 (2008), 707-712.  doi: 10.1097/BOR.0b013e32830c45ae.  Google Scholar

[12]

D. L. Clarke, A. M. Carruthers, T. Mustelin and L. A. Murray, Matrix regulation of idiopathic pulmonary fibrosis: The role of enzymes Fibrogenesis Tissue Repair 6 (2013), 20. doi: 10.1186/1755-1536-6-20.  Google Scholar

[13]

M. K. ConnollyA. S. BedrosianJ. Mallen-St ClairA. P. MitchellJ. IbrahimA. StroudH. L. PachterD. Bar-SagiA. B. Frey and G. Miller, In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha, J. Clin. Invest., 119 (2009), 3213-3225.   Google Scholar

[14]

Z. D. DaniilE. PapageorgiouA. KoutsokeraK. Kostikas and T. Kiropoulos, Serum levels of oxidative stress as a marker of disease severity in idiopathic pulmonary fibrosis, Pulm Pharmacol Ther, 21 (2008), 26-31.  doi: 10.1016/j.pupt.2006.10.005.  Google Scholar

[15]

J. DayA. Friedman and L. S. Schlesinger, Modeling the immune rheostat of macrophages in the lung in response to infection, Proc. Natl. Acad. Sci. U.S.A., 106 (2009), 11246-11251.   Google Scholar

[16]

P. DeepakS. KumarD. Kishore and A. Acharya, IL-13 from Th2-type cells suppresses induction of antigen-specific Th1 immunity in a T-cell lymphoma, Int. Immunol., 22 (2010), 53-63.  doi: 10.1093/intimm/dxp114.  Google Scholar

[17]

J. A. Dranoff and R. G. Wells, Portal fibroblasts: Underappreciated mediators of biliary fibrosis, Hepatology, 51 (2010), 1438-1444.  doi: 10.1002/hep.23405.  Google Scholar

[18]

J. S. Duffield, Macrophages and immunologic inflammation of the kidney, Semin. Nephrol., 30 (2010), 234-254.  doi: 10.1016/j.semnephrol.2010.03.003.  Google Scholar

[19]

H. L. Fallatah, Noninvasive biomarkers of liver fibrosis: An overview Adva. in Hepa. 2014 (2014), Article ID 357287, 15pp. doi: 10.1155/2014/357287.  Google Scholar

[20]

J. M. FanY. Y. NgP. A. HillD. J. Nikolic-PatersonW. MuR. C. Atkins and H. Y. Lan, Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro, Kidney Int., 56 (1999), 1455-1467.   Google Scholar

[21]

S. Fichtner-FeiglW. StroberK. KawakamiR. K. Puri and A. Kitani, IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis, Nat. Med., 12 (2006), 99-106.   Google Scholar

[22]

S. L. Friedman, Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver, Physiol. Rev., 88 (2008), 125-172.  doi: 10.1152/physrev.00013.2007.  Google Scholar

[23]

R. M. GrecoJ. A. Iocono and H. P. Ehrlich, Hyaluronic acid stimulates human fibroblast proliferation within a collagen matrix, J. Cell. Physiol., 177 (1998), 465-473.  doi: 10.1002/(SICI)1097-4652(199812)177:3<465::AID-JCP9>3.0.CO;2-5.  Google Scholar

[24]

J. GuechotL. SerfatyA. M. BonnandO. ChazouilleresR. E. Poupon and R. Poupon, Prognostic value of serum hyaluronan in patients with compensated HCV cirrhosis, J. Hepatol., 32 (2000), 447-452.  doi: 10.1016/S0168-8278(00)80396-7.  Google Scholar

[25]

M. F. HadiE. A. SanderJ. W. Ruberti and V. H. Barocas, Simulated remodeling of loaded collagen networks via strain-dependent enzymatic degradation and constant-rate fiber growth, Mech Mater, 44 (2012), 72-82.  doi: 10.1016/j.mechmat.2011.07.003.  Google Scholar

[26]

P. Halfon, M. Bourliere, G. Penaranda, R. Deydier, C. Renou, D. Botta-Fridlund, A. Tran, I. Portal, I. Allemand, A. Rosenthal-Allieri and D. Ouzan, Accuracy of hyaluronic acid level for predicting liver fibrosis stages in patients with hepatitis C virus, Comp Hepatol 4 (2005), 6. Google Scholar

[27]

L. Hammerich and F. Tacke, Role of gamma-delta T cells in liver inflammation and fibrosis, World J Gastrointest Pathophysiol, 5 (2014), 107-113.   Google Scholar

[28]

A. HancockL. ArmstrongR. Gama and A. Millar, Production of interleukin 13 by alveolar macrophages from normal and fibrotic lung, Am. J. Respir. Cell Mol. Biol., 18 (1998), 60-65.  doi: 10.1165/ajrcmb.18.1.2627.  Google Scholar

[29]

W. HaoE. D. Crouser and A. Friedman, Mathematical model of sarcoidosis, Proc. Natl. Acad. Sci. U.S.A., 111 (2014), 16065-16070.  doi: 10.1073/pnas.1417789111.  Google Scholar

[30]

W. Hao and A. Friedman, The LDL-HDL Profile Determines the risk of atherosclerosis: a Mathematical Model PLoS ONE 9 (2014), e90497. doi: 10.1371/journal.pone.0090497.  Google Scholar

[31]

W. Hao, A. Friedman and C. Marsh, a mathematical model of idiopathic pulmonary fibrosis Plos One 10 (2015), e0135097. doi: 10.1371/journal.pone.0135097.  Google Scholar

[32]

W. HaoB. H. Rovin and A. Friedman, Mathematical model of renal interstitial fibrosis, Proc. Natl. Acad. Sci. U.S.A., 111 (2014), 14193-14198.  doi: 10.1073/pnas.1413970111.  Google Scholar

[33]

W. Hao, L. S. Schlesinger and A. Friedman, Modeling granulomas in response to infection in the lung PLoS ONE 11 (2016), e0148738. doi: 10.1371/journal.pone.0148738.  Google Scholar

[34]

E. L. Herzog and R. Bucala, Fibrocytes in health and disease, Exp. Hematol., 38 (2010), 548-556.  doi: 10.1016/j.exphem.2010.03.004.  Google Scholar

[35]

K. IyonagaM. TakeyaN. SaitaO. SakamotoT. YoshimuraM. Ando and K. Takahashi, Monocyte chemoattractant protein-1 in idiopathic pulmonary fibrosis and other interstitial lung diseases, Hum. Pathol., 25 (1994), 455-463.  doi: 10.1016/0046-8177(94)90117-1.  Google Scholar

[36]

C. JakubzickE. S. ChoiB. H. JoshiM. P. Keane and S. L. Kunkel, Therapeutic attenuation of pulmonary fibrosis via targeting of IL-4-and IL-13-responsive cells, J. Immunol., 171 (2003), 2684-2693.  doi: 10.4049/jimmunol.171.5.2684.  Google Scholar

[37]

C. A. Janeway, T. P., W. M. and M. J. Shlomchik, Immunobiology, 5th edition, The Immune System in Health and Disease 2001. Google Scholar

[38]

R. Khan and R. Sheppard, Fibrosis in heart disease: Understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia, Immunology, 118 (2006), 10-24.  doi: 10.1111/j.1365-2567.2006.02336.x.  Google Scholar

[39]

N. Kikuchi, Y. Ishii, Y. Morishima, Y. Yageta, N. Haraguchi, K. Itoh, M. Yamamoto and N. Hizawa, Nrf2 protects against pulmonary fibrosis by regulating the lung oxidant level and Th1/Th2 balance Respir. Res. 11 (2010), 31. doi: 10.1186/1465-9921-11-31.  Google Scholar

[40]

C. R. Kliment and T. D. Oury, Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis, Free Radic. Biol. Med., 49 (2010), 707-717.  doi: 10.1016/j.freeradbiomed.2010.04.036.  Google Scholar

[41]

P. KongP. Christia and N. G. Frangogiannis, The pathogenesis of cardiac fibrosis, Cell. Mol. Life Sci., 71 (2014), 549-574.  doi: 10.1007/s00018-013-1349-6.  Google Scholar

[42]

T. Lan, T. Kisseleva and D. A. Brenner, Deficiency of NOX1 or NOX4 Prevents Liver inflammation and Fibrosis in Mice through inhibition of Hepatic Stellate cell activation PLoS ONE 10 (2015), e0129743. doi: 10.1371/journal.pone.0129743.  Google Scholar

[43]

A. Leask, TGFbeta, cardiac fibroblasts, and the fibrotic response, Cardiovasc. Res., 74 (2007), 207-212.   Google Scholar

[44]

A. Leask and D. J. Abraham, TGF-beta signaling and the fibrotic response, FASEB J., 18 (2004), 816-827.   Google Scholar

[45]

B. Lee, X. Zhou, K. Riching, K. W. Eliceiri, P. J. Keely, S. A. Guelcher, A. M. Weaver and Y. Jiang, a three-dimensional computational model of collagen network mechanics PLoS ONE 9 (2014), e111896. doi: 10.1371/journal.pone.0111896.  Google Scholar

[46]

C. Liedtke, T. Luedde, T. Sauerbruch, D. Scholten, K. Streetz, F. Tacke, R. Tolba, C. Trautwein, J. Trebicka and R. Weiskirchen, Experimental liver fibrosis research: Update on animal models, legal issues and translational aspects Fibrogenesis Tissue Repair 6 (2013), 19. doi: 10.1186/1755-1536-6-19.  Google Scholar

[47]

P. Lijnen and V. Petrov, Transforming growth factor-beta 1-induced collagen production in cultures of cardiac fibroblasts is the result of the appearance of myofibroblasts, Methods Find Exp Clin Pharmacol, 24 (2002), 333-344.  doi: 10.1358/mf.2002.24.6.693065.  Google Scholar

[48]

L. LiuP. KouQ. ZengG. PeiY. LiH. LiangG. Xu and S. Chen, CD4+ T Lymphocytes, especially Th2 cells, contribute to the progress of renal fibrosis, Am. J. Nephrol., 36 (2012), 386-396.  doi: 10.1159/000343283.  Google Scholar

[49]

T. LiuX. WangM. A. KarsdalD. J. Leeming and F. Genovese, Molecular serum markers of liver fibrosis, Biomark Insights, 7 (2012), 105-117.   Google Scholar

[50]

Y. LiuX. M. WenE. L. LuiS. L. FriedmanW. CuiN. P. HoL. LiT. YeS. T. Fan and H. Zhang, Therapeutic targeting of the PDGF and TGF-beta-signaling pathways in hepatic stellate cells by PTK787/ZK22258, Lab. Invest., 89 (2009), 1152-1160.   Google Scholar

[51]

S. Lo ReD. Lison and F. Huaux, CD4+ T lymphocytes in lung fibrosis: Diverse subsets, diverse functions, J. Leukoc. Biol., 93 (2013), 499-510.   Google Scholar

[52]

N. J. LomasK. L. WattsK. M. AkramN. R. Forsyth and M. A. Spiteri, Idiopathic pulmonary fibrosis: immunohistochemical analysis provides fresh insights into lung tissue remodelling with implications for novel prognostic markers, Int J Clin Exp Pathol, 5 (2012), 58-71.   Google Scholar

[53]

P. LuK. TakaiV. M. Weaver and Z. Werb, Extracellular matrix degradation and remodeling in development and disease, Cold Spring Harb Perspect Biol, 3 (2011), 1-25.  doi: 10.1101/cshperspect.a005058.  Google Scholar

[54]

I. G. LuzinaN. W. ToddA. T. Iacono and S. P. Atamas, roles of T lymphocytes in pulmonary fibrosis, J. Leukoc. Biol., 83 (2008), 237-244.  doi: 10.1189/jlb.0707504.  Google Scholar

[55]

K. J. Maloy and F. Powrie, Intestinal homeostasis and its breakdown in inflammatory bowel disease, Nature, 474 (2011), 298-306.  doi: 10.1038/nature10208.  Google Scholar

[56]

S. MarinoI. B. HogueC. J. Ray and D. E. Kirschner, a methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178-196.  doi: 10.1016/j.jtbi.2008.04.011.  Google Scholar

[57]

D. I. McRitchieN. IsowaJ. D. EdelsonA. M. Xavier and L. Cai, Production of tumour necrosis factor alpha by primary cultured rat alveolar epithelial cells, Cytokine, 12 (2000), 644-654.   Google Scholar

[58]

D. L. MotolaP. CaravanR. T. Chung and B. C. Fuchs, Noninvasive biomarkers of Liver Fibrosis: Clinical applications and Future Directions, Curr Pathobiol Rep, 2 (2014), 245-256.  doi: 10.1007/s40139-014-0061-z.  Google Scholar

[59]

L. A. MurrayQ. ChenM. S. KramerD. P. HessonR. L. Argentieri and et. al, TGF-beta driven lung fibrosis is macrophage dependent and blocked by Serum amyloid P, Int. J. Biochem. Cell Biol., 43 (2011), 154-162.  doi: 10.1016/j.biocel.2010.10.013.  Google Scholar

[60]

S. NakatsujiJ. Yamate and S. Sakuma, Macrophages, myofibroblasts, and extracellular matrix accumulation in interstitial fibrosis of chronic progressive nephropathy in aged rats, Vet. Pathol., 35 (1998), 352-360.  doi: 10.1177/030098589803500504.  Google Scholar

[61]

Y. E. NassefM. M. ShadyE. M. Galal and M. A. Hamed, Performance of diagnostic biomarkers in predicting liver fibrosis among hepatitis C virus-infected Egyptian children, Mem. Inst. Oswaldo Cruz, 108 (2013), 887-893.  doi: 10.1590/0074-0276130139.  Google Scholar

[62]

Q.H. NieY. F. ZhangY. M. XieX. D. LuoB. ShaoJ. Li and Y. X. Zhou, Correlation between TIMP-1 expression and liver fibrosis in two rat liver fibrosis models, World J. Gastroenterol., 12 (2006), 3044-3049.  doi: 10.3748/wjg.v12.i19.3044.  Google Scholar

[63]

D. J. Nikolic-Paterson, CD4+ T cells: A potential player in renal fibrosis, Kidney Int., 78 (2010), 333-335.  doi: 10.1038/ki.2010.182.  Google Scholar

[64]

A. PellicoroP. RamachandranJ. P. Iredale and J. A. Fallowfield, Liver fibrosis and repair: Immune regulation of wound healing in a solid organ, Nat. Rev. Immunol., 14 (2014), 181-194.  doi: 10.1038/nri3623.  Google Scholar

[65]

M. PerepelyukM. TerajimaA. Y. WangP. C. GeorgesP. A. JanmeyM. Yamauchi and R. G. Wells, Hepatic stellate cells and portal fibroblasts are the major cellular sources of collagens and lysyl oxidases in normal liver and early after injury, Am. J. Physiol. Gastrointest. Liver Physiol., 304 (2013), G605-g614.  doi: 10.1152/ajpgi.00222.2012.  Google Scholar

[66]

M. P. RastaldiF. FerrarioL. GiardinoG. Dell'AntonioC. GrilloP. GrilloF. StrutzG. A. MullerG. Colasanti and G. D'Amico, Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies, Kidney Int., 62 (2002), 137-146.  doi: 10.1046/j.1523-1755.2002.00430.x.  Google Scholar

[67]

E. F. RedenteR. C. KeithW. JanssenP. M. HensonL. A. OrtizG. P. DowneyD. L. Bratton and D. W. Riches, Tumor necrosis factor-alpha accelerates the resolution of established pulmonary fibrosis in mice by targeting profibrotic lung macrophages, Am. J. Respir. Cell Mol. Biol., 50 (2014), 825-837.   Google Scholar

[68]

S. D. RicardoH. van Goor and A. A. Eddy, Macrophage diversity in renal injury and repair, J. Clin. Invest., 118 (2008), 3522-3530.  doi: 10.1172/JCI36150.  Google Scholar

[69]

J. RosenbloomS. V. Castro and S. A. Jimenez, Narrative review: Fibrotic diseases: Cellular and molecular mechanisms and novel therapies, Ann. Intern. Med., 152 (2010), 159-166.  doi: 10.7326/0003-4819-152-3-201002020-00007.  Google Scholar

[70]

N. Sakai and A. M. Tager, Fibrosis of two: Epithelial cell-fibroblast interactions in pulmonary fibrosis, Biochim. Biophys. Acta, 1832 (2013), 911-921.  doi: 10.1016/j.bbadis.2013.03.001.  Google Scholar

[71]

M. Selman and A. Pardo, role of epithelial cells in idiopathic pulmonary fibrosis: From innocent targets to serial killers, Proc. Am. Thorac. Soc., 3 (2006), 364-372.  doi: 10.1513/pats.200601-003TK.  Google Scholar

[72]

M. Selman and A. Pardo, revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis. an integral model, Am. J. Respir. Crit. Care Med., 189 (2014), 1161-1172.  doi: 10.1164/rccm.201312-2221PP.  Google Scholar

[73]

G. Shiha, Serum hyaluronic acid: A promising marker of hepatic fibrosis in chronic hepatitis B, Saudi J Gastroenterol, 14 (2008), 161-162.  doi: 10.4103/1319-3767.43272.  Google Scholar

[74]

Y. ShimizuH. KuwabaraA. OnoS. HiguchiT. HisadaK. DobashiM. UtsugiY. Mita and M. Mori, Intracellular Th1/Th2 balance of pulmonary CD4(+) T cells in patients with active interstitial pneumonia evaluated by serum KL-6, Immunopharmacol Immunotoxicol, 28 (2006), 295-304.  doi: 10.1080/08923970600809389.  Google Scholar

[75]

M. S. Simonson and F. Ismail-Beigi, Endothelin-1 increases collagen accumulation in renal mesangial cells by stimulating a chemokine and cytokine autocrine signaling loop, J. Biol. Chem., 286 (2011), 11003-11008.  doi: 10.1074/jbc.M110.190793.  Google Scholar

[76]

F. Strutz and M. Zeisberg, renal fibroblasts and myofibroblasts in chronic kidney disease, J. Am. Soc. Nephrol., 17 (2006), 2992-2998.  doi: 10.1681/ASN.2006050420.  Google Scholar

[77]

F. StrutzM. ZeisbergA. RenziehausenB. RaschkeV. BeckerC. van Kooten and G. Muller, TGF-beta 1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor (FGF-2), Kidney Int., 59 (2001), 579-592.   Google Scholar

[78]

F. Tacke and H. W. Zimmermann, Macrophage heterogeneity in liver injury and fibrosis, J. Hepatol., 60 (2014), 1090-1096.  doi: 10.1016/j.jhep.2013.12.025.  Google Scholar

[79]

N. TakemotoN. Koyano-NakagawaT. YokotaN. AraiS. Miyatake and K. Arai, Th2-specific DNase I-hypersensitive sites in the murine IL-13 and IL-4 intergenic region, Int. Immunol., 10 (1998), 1981-1985.  doi: 10.1093/intimm/10.12.1981.  Google Scholar

[80]

R. J. Tan and Y. Liu, Macrophage-derived TGF-beta in renal fibrosis: not a macro-impact after all, Am. J. Physiol. Renal Physiol., 305 (2013), F821-822.   Google Scholar

[81]

T. T. TapmeierA. FearnK. BrownP. ChowdhuryS. H. SacksN. S. Sheerin and W. Wong, Pivotal role of CD4+ T cells in renal fibrosis following ureteric obstruction, Kidney Int., 78 (2010), 351-362.  doi: 10.1038/ki.2010.177.  Google Scholar

[82]

A. L. Tatler and G. Jenkins, TGF-beta activation and lung fibrosis, Proc. Am. Thorac. Soc., 9 (2012), 130-136.   Google Scholar

[83]

S. S. VeidalM. A. KarsdalE. VassiliadisA. NawrockiM. R. LarsenQ. H. NguyenP. HagglundY. LuoQ. ZhengB. Vainer and D. J. Leeming, MMP mediated degradation of type Ⅵ collagen is highly associated with liver fibrosis-identification and validation of a novel biochemical marker assay, PLoS ONE, 6 (2011), e24753.  doi: 10.1371/journal.pone.0024753.  Google Scholar

[84]

R. VenkayyaM. LamM. WillkomG. Grunig and D. B. Corry, The Th2 lymphocyte products IL-4 and IL-13 rapidly induce airway hyperresponsiveness through direct effects on resident airway cells, Am. J. Respir. Cell Mol. Biol., 26 (2002), 202-208.  doi: 10.1165/ajrcmb.26.2.4600.  Google Scholar

[85]

T. Veremeyko, S. Siddiqui, I. Sotnikov, A. Yung and E. D. Ponomarev, IL-4/IL-13-dependent and independent expression of mir-124 and its contribution to M2 phenotype of monocytic cells in normal conditions and during allergic inflammation PLoS ONE 8 (2013), e81774. doi: 10.1371/journal.pone.0081774.  Google Scholar

[86]

M. A. VernonK. J. Mylonas and J. Hughes, Macrophages and renal fibrosis, Semin. Nephrol., 30 (2010), 302-317.  doi: 10.1016/j.semnephrol.2010.03.004.  Google Scholar

[87]

T. WadaK. FuruichiN. SakaiY. IwataK. KitagawaY. IshidaT. KondoH. HashimotoY. IshiwataN. MukaidaN. TomosugiK. MatsushimaK. Egashira and H. Yokoyama, Gene therapy via blockade of monocyte chemoattractant protein-1 for renal fibrosis, J. Am. Soc. Nephrol., 15 (2004), 940-948.  doi: 10.1097/01.ASN.0000120371.09769.80.  Google Scholar

[88]

T. WadaH. YokoyamaK. Matsushima and K. Kobayashi, Monocyte chemoattractant protein-1: does it play a role in diabetic nephropathy?, Nephrol. Dial. Transplant., 18 (2003), 457-459.  doi: 10.1093/ndt/18.3.457.  Google Scholar

[89]

L. Wei, Immunological aspect of cardiac remodeling: T lymphocyte subsets in inflammation-mediated cardiac fibrosis, Exp. Mol. Pathol., 90 (2011), 74-78.  doi: 10.1016/j.yexmp.2010.10.004.  Google Scholar

[90]

X. WengL. WangJ. WangY. HuH. DuC. XuY. XingX. LiJ. Xiao and Q. Zhang, Grain number, plant height, and heading date7 is a central regulator of growth, development, and stress response, Plant Physiol., 164 (2014), 735-747.  doi: 10.1104/pp.113.231308.  Google Scholar

[91]

T. A. Wynn, Fibrotic disease and the T(H)1/T(H)2 paradigm, Nat. Rev. Immunol., 4 (2004), 583-594.   Google Scholar

[92]

L. XiaoY. DuY. ShenY. HeH. Zhao and Z. Li, TGF-beta 1 induced fibroblast proliferation is mediated by the FGF-2/ErK pathway, Front Biosci (Landmark Ed), 17 (2012), 2667-2674.  doi: 10.2741/4077.  Google Scholar

[93]

A. YatesR. Callard and J. Stark, Combining cytokine signalling with T-bet and GaTa-3 regulation in Th1 and Th2 differentiation: a model for cellular decision-making, J. Theor. Biol., 231 (2004), 181-196.  doi: 10.1016/j.jtbi.2004.06.013.  Google Scholar

[94]

H. ZhaoY. DongX. TianT. K. TanZ. LiuY. ZhaoY. ZhangD. C. h. Harris and G. Zheng, Matrix metalloproteinases contribute to kidney fibrosis in chronic kidney diseases, World J Nephrol, 2 (2013), 84-89.  doi: 10.5527/wjn.v2.i3.84.  Google Scholar

[95]

J. Zhao, N. Tang, K. Wu, W. Dai, C. Ye, J. Shi, J. Zhang, B. Ning, X. Zeng and Y. Lin, Mir-21 simultaneously regulates ErK1 signaling in HSC activation and hepatocyte EMT in hepatic fibrosis PLoS ONE 9 (2014), e108005. doi: 10.1371/journal.pone.0108005.  Google Scholar

Figure 1.  Functions of the liver.
Figure 2.  Network of the fibrosis.
Figure 3.  The average concentrations of cells, cytokines and ECM
Figure 4.  Treatment studies
Figure 5.  Biomarkers HA and TIMP with respect to scar density; the color column scales the scar density in $g/cm^3$.
Figure 6.  The sensitivity analysis for the cytokine production rates. The figure shows the partial rank correlation (PRCC) between the cytokine production rate and the scar concentration at day 200.
Table 1.  The variables of the model; concentration and densities are in units of $g/cm^3$
$M_1$:  density of M1 macrophages $M_2$:  density of M2 macrophages
$T_1$:  Th1 cell density $T_2$:  Th2 cell density
$E_0$:  density of tissue epithelial cells (TECs) $E$:   density of activated TECs
$H$:  density of HSCs $f$:  density of fibroblasts
$m$:  density of myofibroblasts $\rho$:  density of ECM
$G$:  concentration of PDGF $T_\beta$:  concentration of activated TGF-$\beta$
$Q$:  concentration of MMP $Q_r$:  concentration of TIMP
$T_\alpha$:  concentration of TNF-$\alpha$ $I_{\gamma}$:  concentration of IFN-$\gamma$
$I_{2}$:  IL-2 concentration $I_{4}$:  IL-4 concentration
$I_{10}$:  IL-10 concentration $I_{13}$:  IL-13 concentration
$P$:  concentration of MCP-1 $H_A$:  Hyaluronic acid concentration
$S$  scar density
$M_1$:  density of M1 macrophages $M_2$:  density of M2 macrophages
$T_1$:  Th1 cell density $T_2$:  Th2 cell density
$E_0$:  density of tissue epithelial cells (TECs) $E$:   density of activated TECs
$H$:  density of HSCs $f$:  density of fibroblasts
$m$:  density of myofibroblasts $\rho$:  density of ECM
$G$:  concentration of PDGF $T_\beta$:  concentration of activated TGF-$\beta$
$Q$:  concentration of MMP $Q_r$:  concentration of TIMP
$T_\alpha$:  concentration of TNF-$\alpha$ $I_{\gamma}$:  concentration of IFN-$\gamma$
$I_{2}$:  IL-2 concentration $I_{4}$:  IL-4 concentration
$I_{10}$:  IL-10 concentration $I_{13}$:  IL-13 concentration
$P$:  concentration of MCP-1 $H_A$:  Hyaluronic acid concentration
$S$  scar density
Table 2.  Parameters' description and value
Parameter Description Value
$D_M$ dispersion coefficient of macrophages $8.64\times10^{-7}$ $cm^2$ day$^{-1}$[32]
$D_T$ diffusion coefficient of T cell $8.64\times10^{-7}$ $cm^2$ day$^{-1}$[33]
$D_{I_\gamma}$ diffusion coefficient of IFN-$\gamma$ $1.08\times10^{-2} $ $cm^2$ day$^{-1}$[29]
$D_{I_{2}}$ diffusion coefficient of IL-2 $1.08\times10^{-2} $ $cm^2$ day$^{-1}$[29]
$D_{I_{4}}$ diffusion coefficient of IL-4 $1.08\times10^{-2} $ $cm^2$ day$^{-1}$[29]
$D_{I_{12}}$ diffusion coefficient of IL-12 $1.08\times10^{-2} $ $cm^2$ day$^{-1}$[29]
$D_{I_{13}}$ diffusion coefficient of IL-13 $1.08\times10^{-2} $ $cm^2$ day$^{-1}$[29]
$D_{P}$ diffusion coefficient of MCP-1 $1.728\times10^{-1}$ $cm^2$ day$^{-1}$[32]
$D_{G}$ diffusion coefficient of PDGF $8.64\times10^{-2} $ $cm^2$ day$^{-1}$[32]
$D_{Q}$ diffusion coefficient of MMP $4.32\times10^{-2} $ $cm^2$ day$^{-1}$[32]
$D_{Q_r}$ diffusion coefficient for TIMP $4.32\times 10^{-2}$ $cm^2$ day$^{-1}$ [32]
$D_{T_\beta}$ diffusion coefficient for TGF-$\beta$ $4.32\times 10^{-2}$ $cm^2$ day$^{-1}$ [32]
$D_{T_\alpha}$ diffusion coefficient for TNF-$\alpha$ $1.29\times10^{-2} $ $cm^2$ day$^{-1}$[31]
$D_{f}$ dispersion coefficient of fibroblasts $1.47\times10^{-6} $ $cm^2$ day$^{-1}$ [32]
$D_M$ dispersion coefficient of myofibroblasts $1.47\times10^{-5} $ $cm^2$ day$^{-1}$ [32]
$\lambda_{M_2}$ Differentiation rate of M1 to M2 $0.3$ day$^{-1}$ [33]
$\lambda_{M_1}$ Maximal rate at which M2 is activated to become M1 $0.6$/day [33]
$\lambda_{M T}$ transition rate of M2 to M1 macrophages by TNF-$\alpha$ $5\times10^{-3}$ day$^{-1}$ [15]
$\lambda_{MI_r}$ Production rate by IFN-$\gamma$ $1$/day [33]
$\lambda_{MI_4}$ Production rate by IL-4 $1$/day [33]
$\lambda_{MI_{13}}$ Production rate by IL-13 $1$/day [33]
$\lambda_{T1M1}$ Production rate of Th1 cells by M1 macrophages $10$/day [33]
$\lambda_{T1I2}$ Production rate of Th1 cells by IL-12 $1$/day [29]
$\lambda_{T2}$ Production rate of Th2 cells by M1 $0.75$/day estimated
$\lambda_{E_0}$ production rate of AEC 0.25 day$^{-1}$ [31]
$\lambda_{1}$ repair rate of AEC $10^{-3}$ $g/cm^3$ day$^{-1}$ [31]
$\lambda_{EM}$ EMT rate of AEC $1.65\times10^{-3}$ day$^{-1}$ [31]
$\lambda_{H G}$ production rate of HSCs by PDGF $1.5\times10^{-3}$ day$^{-1}$ estimated
$\lambda_{HT_\beta}$ production rate of HSCs by TGF-$\beta$ $3.32\times10^{-3}$ day$^{-1}$ estimated
$\lambda_{H_A H}$ production rate of HA by HSCs $2.9\times10^{-2}$ day$^{-1}$ estimated
$\lambda_{T_\beta M}$ production rate of TGF-$\beta$ by macrophages $1.5\times10^{-2}$ day$^{-1}$ [32]
$\lambda_{T_\beta f}$ production rate of TGF-$\beta$ by fibroblast $7.5\times10^{-3}$ day$^{-1}$ [31]
$\lambda_{T_\beta I_{13}}$ production rate of TGF-$\beta$ by IL-13 $2$ [31]
$\lambda_{GM}$ production rate of PDGF by macrophages $2.4\times10^{-5}$ day$^{-1}$ [32]
$\lambda_{QM}$ production rate of MMP by macrophages $2\times 10^{-3}$ day$^{-1}$ estimated
$\lambda_{Q_rM}$ production rate of TIMP by macrophages $4\times 10^{-4}$ day$^{-1}$ estimated
$\lambda_{P E}$ activation rate of MCP-1 due to AECs $1\times10^{-8}$ day$^{-1}$ [32]
$\lambda_{\rho f}$ activation rate of ECM due to fibroblasts $3\times10^{-3}$ day$^{-1}$ [32]
$\lambda_{\rho m}$ activation rate of ECM due to myofibroblasts $6\times10^{-3}$ day$^{-1}$ [32]
$\lambda_{\rho T_\beta}$ activation rate of ECM due to TGF-$\beta$ 2 [32]
$\lambda_{Ef}$ activation rate of fibroblasts due to bFGF and TGF-$\beta$ $2.5\times10^{-1}$ day$^{-1}$ [31]
$\lambda_{fH_A}$ production rate of fibroblasts by HA $2.5\times10^{-3}$ day$^{-1}$ estimated
$\lambda_{fE}$ production rate of fibroblasts $5\times10^{-4}$ day$^{-1}$ [31]
$\lambda_{mfT}$ activation rate of myofibroblasts due to TGF-$\beta$ $0.3$ day$^{-1}$ estimated
$\lambda_{mfG}$ activation rate of myofibroblasts due to PDGF $0.3$ day$^{-1}$ estimated
Parameter Description Value
$D_M$ dispersion coefficient of macrophages $8.64\times10^{-7}$ $cm^2$ day$^{-1}$[32]
$D_T$ diffusion coefficient of T cell $8.64\times10^{-7}$ $cm^2$ day$^{-1}$[33]
$D_{I_\gamma}$ diffusion coefficient of IFN-$\gamma$ $1.08\times10^{-2} $ $cm^2$ day$^{-1}$[29]
$D_{I_{2}}$ diffusion coefficient of IL-2 $1.08\times10^{-2} $ $cm^2$ day$^{-1}$[29]
$D_{I_{4}}$ diffusion coefficient of IL-4 $1.08\times10^{-2} $ $cm^2$ day$^{-1}$[29]
$D_{I_{12}}$ diffusion coefficient of IL-12 $1.08\times10^{-2} $ $cm^2$ day$^{-1}$[29]
$D_{I_{13}}$ diffusion coefficient of IL-13 $1.08\times10^{-2} $ $cm^2$ day$^{-1}$[29]
$D_{P}$ diffusion coefficient of MCP-1 $1.728\times10^{-1}$ $cm^2$ day$^{-1}$[32]
$D_{G}$ diffusion coefficient of PDGF $8.64\times10^{-2} $ $cm^2$ day$^{-1}$[32]
$D_{Q}$ diffusion coefficient of MMP $4.32\times10^{-2} $ $cm^2$ day$^{-1}$[32]
$D_{Q_r}$ diffusion coefficient for TIMP $4.32\times 10^{-2}$ $cm^2$ day$^{-1}$ [32]
$D_{T_\beta}$ diffusion coefficient for TGF-$\beta$ $4.32\times 10^{-2}$ $cm^2$ day$^{-1}$ [32]
$D_{T_\alpha}$ diffusion coefficient for TNF-$\alpha$ $1.29\times10^{-2} $ $cm^2$ day$^{-1}$[31]
$D_{f}$ dispersion coefficient of fibroblasts $1.47\times10^{-6} $ $cm^2$ day$^{-1}$ [32]
$D_M$ dispersion coefficient of myofibroblasts $1.47\times10^{-5} $ $cm^2$ day$^{-1}$ [32]
$\lambda_{M_2}$ Differentiation rate of M1 to M2 $0.3$ day$^{-1}$ [33]
$\lambda_{M_1}$ Maximal rate at which M2 is activated to become M1 $0.6$/day [33]
$\lambda_{M T}$ transition rate of M2 to M1 macrophages by TNF-$\alpha$ $5\times10^{-3}$ day$^{-1}$ [15]
$\lambda_{MI_r}$ Production rate by IFN-$\gamma$ $1$/day [33]
$\lambda_{MI_4}$ Production rate by IL-4 $1$/day [33]
$\lambda_{MI_{13}}$ Production rate by IL-13 $1$/day [33]
$\lambda_{T1M1}$ Production rate of Th1 cells by M1 macrophages $10$/day [33]
$\lambda_{T1I2}$ Production rate of Th1 cells by IL-12 $1$/day [29]
$\lambda_{T2}$ Production rate of Th2 cells by M1 $0.75$/day estimated
$\lambda_{E_0}$ production rate of AEC 0.25 day$^{-1}$ [31]
$\lambda_{1}$ repair rate of AEC $10^{-3}$ $g/cm^3$ day$^{-1}$ [31]
$\lambda_{EM}$ EMT rate of AEC $1.65\times10^{-3}$ day$^{-1}$ [31]
$\lambda_{H G}$ production rate of HSCs by PDGF $1.5\times10^{-3}$ day$^{-1}$ estimated
$\lambda_{HT_\beta}$ production rate of HSCs by TGF-$\beta$ $3.32\times10^{-3}$ day$^{-1}$ estimated
$\lambda_{H_A H}$ production rate of HA by HSCs $2.9\times10^{-2}$ day$^{-1}$ estimated
$\lambda_{T_\beta M}$ production rate of TGF-$\beta$ by macrophages $1.5\times10^{-2}$ day$^{-1}$ [32]
$\lambda_{T_\beta f}$ production rate of TGF-$\beta$ by fibroblast $7.5\times10^{-3}$ day$^{-1}$ [31]
$\lambda_{T_\beta I_{13}}$ production rate of TGF-$\beta$ by IL-13 $2$ [31]
$\lambda_{GM}$ production rate of PDGF by macrophages $2.4\times10^{-5}$ day$^{-1}$ [32]
$\lambda_{QM}$ production rate of MMP by macrophages $2\times 10^{-3}$ day$^{-1}$ estimated
$\lambda_{Q_rM}$ production rate of TIMP by macrophages $4\times 10^{-4}$ day$^{-1}$ estimated
$\lambda_{P E}$ activation rate of MCP-1 due to AECs $1\times10^{-8}$ day$^{-1}$ [32]
$\lambda_{\rho f}$ activation rate of ECM due to fibroblasts $3\times10^{-3}$ day$^{-1}$ [32]
$\lambda_{\rho m}$ activation rate of ECM due to myofibroblasts $6\times10^{-3}$ day$^{-1}$ [32]
$\lambda_{\rho T_\beta}$ activation rate of ECM due to TGF-$\beta$ 2 [32]
$\lambda_{Ef}$ activation rate of fibroblasts due to bFGF and TGF-$\beta$ $2.5\times10^{-1}$ day$^{-1}$ [31]
$\lambda_{fH_A}$ production rate of fibroblasts by HA $2.5\times10^{-3}$ day$^{-1}$ estimated
$\lambda_{fE}$ production rate of fibroblasts $5\times10^{-4}$ day$^{-1}$ [31]
$\lambda_{mfT}$ activation rate of myofibroblasts due to TGF-$\beta$ $0.3$ day$^{-1}$ estimated
$\lambda_{mfG}$ activation rate of myofibroblasts due to PDGF $0.3$ day$^{-1}$ estimated
Table 3.  Parameters' description and value
Parameter Description Value
$\lambda_{T_\alpha M} $ activation rate of TNF-$\alpha$ due to macrophage $1.39\times10^{-2}$ day$^{-1}$ [31]
$\lambda_{T_\alpha E} $ activation rate of TNF-$\alpha$ due to macrophage $6.9\times10^{-4}$ day$^{-1}$ [31]
$\lambda_{I_2 T_1} $ production rate of IL-2 by Th1 cells $4.2\times10^{-4}$ day$^{-1}$ [33]
$\lambda_{I_{4}T_2}$ production rate of IL-10 by Th2 cells $5.96\times10^{-4}$ day$^{-1}$ [33]
$\lambda_{I_{4}M_2}$ production rate of IL-10 by M2 macrophages $2.38\times10^{-3}$ day$^{-1}$ [33]
$\lambda_{I_{10}M2}$ production rate of IL-10 by M2 macrophages $6.67\times10^{-4}$ day$^{-1}$ [33]
$\lambda_{I_{12}M_1}$ production rate of IL-12 by M1 macrophages $9.64\times10^{-2}$ day$^{-1}$ [33]
$\lambda_{I_{13}T_2}$ production rate of IL-13 by Th2 cells $2.24\times10^{-4}$ day$^{-1}$ [33]
$\lambda_{I_{13}M_2}$ production rate of IL-13 by macrophages $5.94\times10^{-4}$ day$^{-1}$ [33]
$\lambda_{I_{r}T_1}$ production rate of IFN-$\gamma$ by Th1 cells $2.87\times10^{-5}$ day$^{-1}$ [33]
$d_{M_2}$ death rate of macrophages 0.015 day$^{-1}$ [32]
$d_{M_1}$ death rate of macrophages 0.02 day$^{-1}$ [31]
$d_{T_1}$ death rate of Th1 cell $1.97\times10^{-1}$ day$^{-1}$ [33]
$d_{T_{2}}$ death rate of Th2 cell $1.97\times10^{-1}$ day$^{-1}$ [33]
$d_E$ death rate of activated AECs $1.65\times10^{-2}$ day$^{-1}$ [32]
$d_H$ death rate of HSCs $1.66\times10^{-2}$ day$^{-1}$ estimated
$d_{E_0}$ death rate of inactivated AECs $1.65\times10^{-2}$ day$^{-1}$ [32]
$d_{E_0T}$ death rate of AECs $1.65\times10^{-3}$ day$^{-1}$ [32]
$\delta$ increased death rate of AECs by injury $1\times10^{-3}$ day$^{-1}$ [31]
$d_\rho$ degradation rate of ECM $0.37$ day$^{-1}$ [32]
$d_{H_A}$ degradation rate of HA $0.1$ day$^{-1}$ estimated
$d_P$ degradation rate of MCP-1 $1.73$ day$^{-1}$[32]
$d_{PM}$ internalization rate of MCP-1 by M1 macrophages $2.08\times10^{-4}$ day$^{-1}$[32]
$d_G$ degradation rate of PDGF $3.84$ day$^{-1}$ [32]
$d_{QQ_r}$ binding rate of MMP to TIMP $4.98\times10^{5}$ $cm^3g^{-1}$ day$^{-1}$ [32]
$d_{Q_rQ}$ binding rate of TIMP to MMP $1.04\times10^{6}$ $cm^3g^{-1}$ day$^{-1}$ [32]
$d_Q$ degradation rate of MMP $4.32$ day$^{-1}$[32]
$d_{Q_r}$ degradation rate of TIMP $21.6$ day$^{-1}$ [32]
$d_{\rho Q}$ degradation rate of ECM due to MMP $2.59\times 10^{5}$ $cm^3g^{-1}$ day$^{-1}$ [32]
$d_{T_\beta}$ degradation rate of TGF-$\beta$ $3.33\times10^2$ day$^{-1}$ [32]
$d_f$ death rate of fibroblasts $1.66\times10^{-2}$ day$^{-1}$ [32]
$d_m$ death rate of myofibroblasts $1.66\times10^{-2}$ day$^{-1}$ [32]
$d_{T_\alpha}$ degradation rate of TNF-$\alpha$ 55.45 day$^{-1}$ [33]
$d_{I_{2}}$ degradation rate of IL-2 2.376 day$^{-1}$ [33]
$d_{I_{4}}$ degradation rate of IL-4 50 day$^{-1}$ [33]
$d_{I_{10}}$ degradation rate of IL-10 8.32 day$^{-1}$ [33]
$d_{I_{12}}$ degradation rate of IL-12 1.38 day$^{-1}$ [33]
$d_{I_{13}}$ degradation rate of IL-13 12.47 day$^{-1}$ [33]
$d_{I_{\gamma}}$ degradation rate of IFN-$\gamma$ $2.16$ day$^{-1}$ [33]
Parameter Description Value
$\lambda_{T_\alpha M} $ activation rate of TNF-$\alpha$ due to macrophage $1.39\times10^{-2}$ day$^{-1}$ [31]
$\lambda_{T_\alpha E} $ activation rate of TNF-$\alpha$ due to macrophage $6.9\times10^{-4}$ day$^{-1}$ [31]
$\lambda_{I_2 T_1} $ production rate of IL-2 by Th1 cells $4.2\times10^{-4}$ day$^{-1}$ [33]
$\lambda_{I_{4}T_2}$ production rate of IL-10 by Th2 cells $5.96\times10^{-4}$ day$^{-1}$ [33]
$\lambda_{I_{4}M_2}$ production rate of IL-10 by M2 macrophages $2.38\times10^{-3}$ day$^{-1}$ [33]
$\lambda_{I_{10}M2}$ production rate of IL-10 by M2 macrophages $6.67\times10^{-4}$ day$^{-1}$ [33]
$\lambda_{I_{12}M_1}$ production rate of IL-12 by M1 macrophages $9.64\times10^{-2}$ day$^{-1}$ [33]
$\lambda_{I_{13}T_2}$ production rate of IL-13 by Th2 cells $2.24\times10^{-4}$ day$^{-1}$ [33]
$\lambda_{I_{13}M_2}$ production rate of IL-13 by macrophages $5.94\times10^{-4}$ day$^{-1}$ [33]
$\lambda_{I_{r}T_1}$ production rate of IFN-$\gamma$ by Th1 cells $2.87\times10^{-5}$ day$^{-1}$ [33]
$d_{M_2}$ death rate of macrophages 0.015 day$^{-1}$ [32]
$d_{M_1}$ death rate of macrophages 0.02 day$^{-1}$ [31]
$d_{T_1}$ death rate of Th1 cell $1.97\times10^{-1}$ day$^{-1}$ [33]
$d_{T_{2}}$ death rate of Th2 cell $1.97\times10^{-1}$ day$^{-1}$ [33]
$d_E$ death rate of activated AECs $1.65\times10^{-2}$ day$^{-1}$ [32]
$d_H$ death rate of HSCs $1.66\times10^{-2}$ day$^{-1}$ estimated
$d_{E_0}$ death rate of inactivated AECs $1.65\times10^{-2}$ day$^{-1}$ [32]
$d_{E_0T}$ death rate of AECs $1.65\times10^{-3}$ day$^{-1}$ [32]
$\delta$ increased death rate of AECs by injury $1\times10^{-3}$ day$^{-1}$ [31]
$d_\rho$ degradation rate of ECM $0.37$ day$^{-1}$ [32]
$d_{H_A}$ degradation rate of HA $0.1$ day$^{-1}$ estimated
$d_P$ degradation rate of MCP-1 $1.73$ day$^{-1}$[32]
$d_{PM}$ internalization rate of MCP-1 by M1 macrophages $2.08\times10^{-4}$ day$^{-1}$[32]
$d_G$ degradation rate of PDGF $3.84$ day$^{-1}$ [32]
$d_{QQ_r}$ binding rate of MMP to TIMP $4.98\times10^{5}$ $cm^3g^{-1}$ day$^{-1}$ [32]
$d_{Q_rQ}$ binding rate of TIMP to MMP $1.04\times10^{6}$ $cm^3g^{-1}$ day$^{-1}$ [32]
$d_Q$ degradation rate of MMP $4.32$ day$^{-1}$[32]
$d_{Q_r}$ degradation rate of TIMP $21.6$ day$^{-1}$ [32]
$d_{\rho Q}$ degradation rate of ECM due to MMP $2.59\times 10^{5}$ $cm^3g^{-1}$ day$^{-1}$ [32]
$d_{T_\beta}$ degradation rate of TGF-$\beta$ $3.33\times10^2$ day$^{-1}$ [32]
$d_f$ death rate of fibroblasts $1.66\times10^{-2}$ day$^{-1}$ [32]
$d_m$ death rate of myofibroblasts $1.66\times10^{-2}$ day$^{-1}$ [32]
$d_{T_\alpha}$ degradation rate of TNF-$\alpha$ 55.45 day$^{-1}$ [33]
$d_{I_{2}}$ degradation rate of IL-2 2.376 day$^{-1}$ [33]
$d_{I_{4}}$ degradation rate of IL-4 50 day$^{-1}$ [33]
$d_{I_{10}}$ degradation rate of IL-10 8.32 day$^{-1}$ [33]
$d_{I_{12}}$ degradation rate of IL-12 1.38 day$^{-1}$ [33]
$d_{I_{13}}$ degradation rate of IL-13 12.47 day$^{-1}$ [33]
$d_{I_{\gamma}}$ degradation rate of IFN-$\gamma$ $2.16$ day$^{-1}$ [33]
Table 4.  Parameters' description and value
Parameter Description Value
$\chi_{P}$ chemotactic sensitivity parameter by MCP-1 10 $cm^5g^{-1}$ day$^{-1}$[32]
$A_{H}$ HSC proliferation $3.32\times10^{-5}~g/cm^3\hbox{ day}^{-1}$ estimated
$A_{E0}$ intrinsic AEC proliferation $1.65\times10^{-3}~g/cm^3\hbox{ day}^{-1}$ estimated
$K_{G}$ PDGF saturation for activation of myofibroblasts $1.5 \times 10^{-8}$ $gcm^{-3}$ [32]
$K_{T_\beta}$ TGF-$\beta$ saturation for apoptosis of AECs $1\times 10^{-10}$ $gcm^{-3}$ [32]
$K_{P}$ MCP-1 saturation for influx of macrophages $5\times 10^{-9}$ $gcm^{-3}$ [32]
$K_{T_\alpha}$ TNF-$\alpha$ saturation $5\times 10^{-7}$ $gcm^{-3}$ [29]
$K_{I_{13}}$ IL-13 saturation $2\times10^{-7}$ g/$cm^3$ [29]
$K_{H_A}$ HA saturation $2\times10^{-3}$ g/ml estimated
$K_{T_1}$ Th1 cell saturation $1\times10^{-1}$ g/ml [33]
$K_{I_\gamma}$ IFN-$\gamma$ saturation $2\times10^{-7} ~gcm^{-3}$ [33]
$K_{I_{2}}$ IL-2 saturation $5\times10^{-7}$ g/$cm^3$ [33]
$K_{I_{4}}$ IL-4 saturation $2\times10^{-7}$ g/$cm^3$ [33]
$K_{I_{10}}$ IL-10 saturation $2\times10^{-7}$ g/$cm^3$ [29]
$K_{I_{12}}$ IL-12 saturation $1.5\times10^{-5}$ g/$cm^3$ [29]
$K_{I_{13}}$ IL-13 saturation $2\times10^{-7}$ g/$cm^3$ [29]
$K_{E}$ AEC saturation $0.1$ g/$cm^3$ [31]
$\rho_0$ ECM saturation $10^{-2}$ $gcm^{-3}$ [32]
$\rho^*$ ECM density in health $3.26\times10^{-3}$ $gcm^{-3}$ [31]
$E^*$ TEC density in health $0.799$ $gcm^{-3}$ [31]
$f^*$ fibroblast density in health $4.75\times10^{-3}$ $gcm^{-3}$ [31]
$M_0$ source/influx of macrophages from blood $5\times 10^{-5}$ $gcm^{-3}$ [32]
$\beta$ influx rate of macrophages into interstitium $0.2 ~cm^{-1}$ [32]
$A_{M_2}$ Source term of M2 $0.05$ [29]
$K_{M_1}$ M1 saturation $0.5$ [15]
$K_{M_2}$ M2 saturation $1$ [15]
$K_{p}$ MCP-1 saturation $5\times10^{-9}$ [32]
$E_0$ TEC saturation $0.1$ g/ml estimated
$\rho_0$ ECM saturation $10^{-2}$ g/ml [29]
$T_0$ T cells saturation $3\times10^{-5}$ g/ml [30,30]
Parameter Description Value
$\chi_{P}$ chemotactic sensitivity parameter by MCP-1 10 $cm^5g^{-1}$ day$^{-1}$[32]
$A_{H}$ HSC proliferation $3.32\times10^{-5}~g/cm^3\hbox{ day}^{-1}$ estimated
$A_{E0}$ intrinsic AEC proliferation $1.65\times10^{-3}~g/cm^3\hbox{ day}^{-1}$ estimated
$K_{G}$ PDGF saturation for activation of myofibroblasts $1.5 \times 10^{-8}$ $gcm^{-3}$ [32]
$K_{T_\beta}$ TGF-$\beta$ saturation for apoptosis of AECs $1\times 10^{-10}$ $gcm^{-3}$ [32]
$K_{P}$ MCP-1 saturation for influx of macrophages $5\times 10^{-9}$ $gcm^{-3}$ [32]
$K_{T_\alpha}$ TNF-$\alpha$ saturation $5\times 10^{-7}$ $gcm^{-3}$ [29]
$K_{I_{13}}$ IL-13 saturation $2\times10^{-7}$ g/$cm^3$ [29]
$K_{H_A}$ HA saturation $2\times10^{-3}$ g/ml estimated
$K_{T_1}$ Th1 cell saturation $1\times10^{-1}$ g/ml [33]
$K_{I_\gamma}$ IFN-$\gamma$ saturation $2\times10^{-7} ~gcm^{-3}$ [33]
$K_{I_{2}}$ IL-2 saturation $5\times10^{-7}$ g/$cm^3$ [33]
$K_{I_{4}}$ IL-4 saturation $2\times10^{-7}$ g/$cm^3$ [33]
$K_{I_{10}}$ IL-10 saturation $2\times10^{-7}$ g/$cm^3$ [29]
$K_{I_{12}}$ IL-12 saturation $1.5\times10^{-5}$ g/$cm^3$ [29]
$K_{I_{13}}$ IL-13 saturation $2\times10^{-7}$ g/$cm^3$ [29]
$K_{E}$ AEC saturation $0.1$ g/$cm^3$ [31]
$\rho_0$ ECM saturation $10^{-2}$ $gcm^{-3}$ [32]
$\rho^*$ ECM density in health $3.26\times10^{-3}$ $gcm^{-3}$ [31]
$E^*$ TEC density in health $0.799$ $gcm^{-3}$ [31]
$f^*$ fibroblast density in health $4.75\times10^{-3}$ $gcm^{-3}$ [31]
$M_0$ source/influx of macrophages from blood $5\times 10^{-5}$ $gcm^{-3}$ [32]
$\beta$ influx rate of macrophages into interstitium $0.2 ~cm^{-1}$ [32]
$A_{M_2}$ Source term of M2 $0.05$ [29]
$K_{M_1}$ M1 saturation $0.5$ [15]
$K_{M_2}$ M2 saturation $1$ [15]
$K_{p}$ MCP-1 saturation $5\times10^{-9}$ [32]
$E_0$ TEC saturation $0.1$ g/ml estimated
$\rho_0$ ECM saturation $10^{-2}$ g/ml [29]
$T_0$ T cells saturation $3\times10^{-5}$ g/ml [30,30]
[1]

Robert P. Gilbert, Philippe Guyenne, Ying Liu. Modeling of the kinetics of vitamin D$_3$ in osteoblastic cells. Mathematical Biosciences & Engineering, 2013, 10 (2) : 319-344. doi: 10.3934/mbe.2013.10.319

[2]

Thierry Colin, Marie-Christine Durrieu, Julie Joie, Yifeng Lei, Youcef Mammeri, Clair Poignard, Olivier Saut. Modeling of the migration of endothelial cells on bioactive micropatterned polymers. Mathematical Biosciences & Engineering, 2013, 10 (4) : 997-1015. doi: 10.3934/mbe.2013.10.997

[3]

Maria Vittoria Barbarossa, Christina Kuttler, Jonathan Zinsl. Delay equations modeling the effects of phase-specific drugs and immunotherapy on proliferating tumor cells. Mathematical Biosciences & Engineering, 2012, 9 (2) : 241-257. doi: 10.3934/mbe.2012.9.241

[4]

Yueping Dong, Rinko Miyazaki, Yasuhiro Takeuchi. Mathematical modeling on helper T cells in a tumor immune system. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 55-72. doi: 10.3934/dcdsb.2014.19.55

[5]

Abdessamad Tridane, Yang Kuang. Modeling the interaction of cytotoxic T lymphocytes and influenza virus infected epithelial cells. Mathematical Biosciences & Engineering, 2010, 7 (1) : 171-185. doi: 10.3934/mbe.2010.7.171

[6]

Jaouad Danane, Karam Allali. Optimal control of an HIV model with CTL cells and latently infected cells. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019048

[7]

Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, Magda Lopes Texeira, José Manuel Nieto-Villar. The dynamics of tumor growth and cells pattern morphology. Mathematical Biosciences & Engineering, 2009, 6 (3) : 547-559. doi: 10.3934/mbe.2009.6.547

[8]

A. Bernardini, J. Bragard, H. Mancini. Synchronization between two Hele-Shaw Cells. Mathematical Biosciences & Engineering, 2004, 1 (2) : 339-346. doi: 10.3934/mbe.2004.1.339

[9]

Yirmeyahu J. Kaminski. Equilibrium locus of the flow on circular networks of cells. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1169-1177. doi: 10.3934/dcdss.2018066

[10]

Avner Friedman, Yangjin Kim. Tumor cells proliferation and migration under the influence of their microenvironment. Mathematical Biosciences & Engineering, 2011, 8 (2) : 371-383. doi: 10.3934/mbe.2011.8.371

[11]

Michel Pierre, Grégory Vial. Best design for a fastest cells selecting process. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 223-237. doi: 10.3934/dcdss.2011.4.223

[12]

Robert Artebrant, Aslak Tveito, Glenn T. Lines. A method for analyzing the stability of the resting state for a model of pacemaker cells surrounded by stable cells. Mathematical Biosciences & Engineering, 2010, 7 (3) : 505-526. doi: 10.3934/mbe.2010.7.505

[13]

Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481

[14]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[15]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053

[16]

Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515

[17]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[18]

Barbara Abraham-Shrauner. Exact solutions of nonlinear partial differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 577-582. doi: 10.3934/dcdss.2018032

[19]

Jiaoyan Wang, Jianzhong Su, Humberto Perez Gonzalez, Jonathan Rubin. A reliability study of square wave bursting $\beta$-cells with noise. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 569-588. doi: 10.3934/dcdsb.2011.16.569

[20]

Xiangying Meng, Quanbao Ji, John Rinzel. Firing control of ink gland motor cells in Aplysia californica. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 529-545. doi: 10.3934/dcdsb.2011.16.529

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (22)
  • HTML views (12)
  • Cited by (0)

Other articles
by authors

[Back to Top]