# American Institute of Mathematical Sciences

December  2016, 11(4): 627-653. doi: 10.3934/nhm.2016012

## Homogenization of nonlinear dissipative hyperbolic problems exhibiting arbitrarily many spatial and temporal scales

 1 Department of Quality Technology and Management, Mechanical Engineering and Mathematics, Mid Sweden University, S-83125 Östersund, Sweden, Sweden

Received  May 2015 Revised  April 2016 Published  October 2016

This paper concerns the homogenization of nonlinear dissipative hyperbolic problems \begin{gather*} \partial _{tt}u^{\varepsilon }\left( x,t\right) -\nabla \cdot \left( a\left( \frac{x}{\varepsilon ^{q_{1}}},\ldots ,\frac{x}{\varepsilon ^{q_{n}}},\frac{t }{\varepsilon ^{r_{1}}},\ldots ,\frac{t}{\varepsilon ^{r_{m}}}\right) \nabla u^{\varepsilon }\left( x,t\right) \right) \\ +g\left( \frac{x}{\varepsilon ^{q_{1}}},\ldots ,\frac{x}{\varepsilon ^{q_{n}} },\frac{t}{\varepsilon ^{r_{1}}},\ldots ,\frac{t}{\varepsilon ^{r_{m}}} ,u^{\varepsilon }\left( x,t\right) ,\nabla u^{\varepsilon }\left( x,t\right) \right) =f(x,t) \end{gather*} where both the elliptic coefficient $a$ and the dissipative term $g$ are periodic in the $n+m$ first arguments where $n$ and $m$ may attain any non-negative integer value. The homogenization procedure is performed within the framework of evolution multiscale convergence which is a generalization of two-scale convergence to include several spatial and temporal scales. In order to derive the local problems, one for each spatial scale, the crucial concept of very weak evolution multiscale convergence is utilized since it allows less benign sequences to attain a limit. It turns out that the local problems do not involve the dissipative term $g$ even though the homogenized problem does and, due to the nonlinearity property, an important part of the work is to determine the effective dissipative term. A brief illustration of how to use the main homogenization result is provided by applying it to an example problem exhibiting six spatial and eight temporal scales in such a way that $a$ and $g$ have disparate oscillation patterns.
Citation: Liselott Flodén, Jens Persson. Homogenization of nonlinear dissipative hyperbolic problems exhibiting arbitrarily many spatial and temporal scales. Networks & Heterogeneous Media, 2016, 11 (4) : 627-653. doi: 10.3934/nhm.2016012
##### References:
 [1] G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084.  Google Scholar [2] G. Allaire and M. Briane, Multiscale convergence and reiterated homogenization, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 297-342. doi: 10.1017/S0308210500022757.  Google Scholar [3] M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Existence and boundary stabilization of a nonlinear hyperbolic equation with time-dependent coefficients, Electron. J. Differential Equations, (1998), 21 pp.  Google Scholar [4] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. A. Soriano and J. S. Souza, Homogenization and uniform stabilization for a nonlinear hyperbolic equation in domains with holes of small capacity, Electron. J. Differential Equations, (2004), 19 pp.  Google Scholar [5] D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford Lecture Series in Mathematics and its Applications, 17, The Clarendon Press, Oxford University Press, New York, 1999.  Google Scholar [6] L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 359-375. doi: 10.1017/S0308210500018631.  Google Scholar [7] L. C. Evans, Periodic homogenisation of certain fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 245-265. doi: 10.1017/S0308210500032121.  Google Scholar [8] L. Flodén, A. Holmbom, M. Olsson and J. Persson, Very weak multiscale convergence, Appl. Math. Lett., 23 (2010), 1170-1173. doi: 10.1016/j.aml.2010.05.005.  Google Scholar [9] L. Flodén, A. Holmbom, M. Olsson Lindberg and J. Persson, Detection of scales of heterogeneity and parabolic homogenization applying very weak multiscale convergence, Ann. Funct. Anal., 2 (2011), 84-99. doi: 10.15352/afa/1399900264.  Google Scholar [10] L. Flodén, A. Holmbom, M. Olsson Lindberg and J. Persson, Homogenization of parabolic equations with an arbitrary number of scales in both space and time, J. Appl. Math., 2014 (2014), Art. ID 101685, 16 pp. doi: 10.1155/2014/101685.  Google Scholar [11] L. Flodén and M. Olsson, Reiterated homogenization of some linear and nonlinear monotone parabolic operators, Can. Appl. Math. Q., 14 (2006), 149-183.  Google Scholar [12] L. Flodén and M. Olsson, Homogenization of some parabolic operators with several time scales, Appl. Math., 52 (2007), 431-446. doi: 10.1007/s10492-007-0025-2.  Google Scholar [13] M. Hairer, E. Pardoux and A. Piatnitski, Random homogenisation of a highly oscillatory singular potential, Stoch. Partial Differ. Equ. Anal. Comput., 1 (2013), 571-605. doi: 10.1007/s40072-013-0018-y.  Google Scholar [14] A. Holmbom, Homogenization of parabolic equations. An alternative approach and some corrector-type results, Appl. Math., 42 (1997), 321-343. doi: 10.1023/A:1023049608047.  Google Scholar [15] J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod; Gauthier-Villars, Paris, 1969.  Google Scholar [16] D. Lukkassen, G. Nguetseng and P. Wall, Two-scale convergence, Int. J. Pure Appl. Math., 2 (2002), 35-86.  Google Scholar [17] A. K. Nandakumaran and M. Rajesh, Homogenization of a nonlinear degenerate parabolic differential equation, Electron. J. Differential Equations, (2001), 19 pp.  Google Scholar [18] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623. doi: 10.1137/0520043.  Google Scholar [19] G. Nguetseng, Deterministic homogenization of a semilinear elliptic partial differential equation of order $2m$, Math. Rep. (Bucur.), 8 (2006), 167-195.  Google Scholar [20] G. Nguetseng, H. Nnang and N. Svanstedt, $G$-convergence and homogenization of monotone damped hyperbolic equations, Banach J. Math. Anal., 4 (2010), 100-115. doi: 10.15352/bjma/1272374674.  Google Scholar [21] G. Nguetseng, H. Nnang and N. Svanstedt, Asymptotic analysis for a weakly damped wave equation with application to a problem arising in elasticity, J. Funct. Spaces Appl., 8 (2010), 17-54. doi: 10.1155/2010/291670.  Google Scholar [22] G. Nguetseng, H. Nnang and N. Svanstedt, Deterministic homogenization of quasilinear damped hyperbolic equations, Acta Math. Sci. Ser. B Engl. Ed., 31 (2011), 1823-1850. doi: 10.1016/S0252-9602(11)60364-0.  Google Scholar [23] G. Nguetseng and J. L. Woukeng, Deterministic homogenization of parabolic monotone operators with time dependent coefficients, Electron. J. Differential Equations, (2004), 23 pp.  Google Scholar [24] G. Nguetseng and J. L. Woukeng, $\Sigma$-convergence of nonlinear parabolic operators, Nonlinear Anal., 66 (2007), 968-1004. doi: 10.1016/j.na.2005.12.035.  Google Scholar [25] H. Nnang, Deterministic homogenization of weakly damped nonlinear hyperbolic-parabolic equations, NoDEA Nonlinear Differential Equations Appl., 19 (2012), 539-574. doi: 10.1007/s00030-011-0142-1.  Google Scholar [26] L. S. Pankratov and I. D. Chueshov, Averaging of attractors of nonlinear hyperbolic equations with asymptotically degenerate coefficients, Mat. Sb., 190 (1999), 99-126. doi: 10.1070/SM1999v190n09ABEH000427.  Google Scholar [27] E. Pardoux and A. Piatnitski, Homogenization of a singular random one-dimensional PDE with time-varying coefficients, Ann. Probab., 40 (2012), 1316-1356. doi: 10.1214/11-AOP650.  Google Scholar [28] J. Persson, Selected Topics in Homogenization, Mid Sweden University Doctoral Thesis 127, 2012. (URL: http://www.diva-portal.org/smash/get/diva2:527223/FULLTEXT01.pdf.) Google Scholar [29] J. Persson, Homogenization of monotone parabolic problems with several temporal scales, Appl. Math., 57 (2012), 191-214. doi: 10.1007/s10492-012-0013-z.  Google Scholar [30] N. Svanstedt, Convergence of quasi-linear hyperbolic equations, J. Hyperbolic Differ. Equ., 4 (2007), 655-677. doi: 10.1142/S0219891607001306.  Google Scholar [31] N. Svanstedt and J. L. Woukeng, Periodic homogenization of strongly nonlinear reaction-diffusion equations with large reaction terms, Appl. Anal., 92 (2013), 1357-1378. doi: 10.1080/00036811.2012.678334.  Google Scholar [32] M. I. Vishik and B. Fidler, Quantative averaging of global attractors of hyperbolic wave equations with rapidly oscillating coefficients, Uspekhi Mat. Nauk., 57 (2002), 75-94. doi: 10.1070/RM2002v057n04ABEH000534.  Google Scholar [33] J. L. Woukeng and D. Dongo, Multiscale homogenization of nonlinear hyperbolic equations with several time scales, Acta Math. Sci. Ser. B Engl. Ed., 31 (2011), 843-856. doi: 10.1016/S0252-9602(11)60281-6.  Google Scholar [34] E. Zeidler, Nonlinear Functional Analysis and its Applications IIA. Linear Monotone Operators, Springer Verlag, New York, 1990. doi: 10.1007/978-1-4612-0985-0.  Google Scholar

show all references

##### References:
 [1] G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084.  Google Scholar [2] G. Allaire and M. Briane, Multiscale convergence and reiterated homogenization, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 297-342. doi: 10.1017/S0308210500022757.  Google Scholar [3] M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Existence and boundary stabilization of a nonlinear hyperbolic equation with time-dependent coefficients, Electron. J. Differential Equations, (1998), 21 pp.  Google Scholar [4] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. A. Soriano and J. S. Souza, Homogenization and uniform stabilization for a nonlinear hyperbolic equation in domains with holes of small capacity, Electron. J. Differential Equations, (2004), 19 pp.  Google Scholar [5] D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford Lecture Series in Mathematics and its Applications, 17, The Clarendon Press, Oxford University Press, New York, 1999.  Google Scholar [6] L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 359-375. doi: 10.1017/S0308210500018631.  Google Scholar [7] L. C. Evans, Periodic homogenisation of certain fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 245-265. doi: 10.1017/S0308210500032121.  Google Scholar [8] L. Flodén, A. Holmbom, M. Olsson and J. Persson, Very weak multiscale convergence, Appl. Math. Lett., 23 (2010), 1170-1173. doi: 10.1016/j.aml.2010.05.005.  Google Scholar [9] L. Flodén, A. Holmbom, M. Olsson Lindberg and J. Persson, Detection of scales of heterogeneity and parabolic homogenization applying very weak multiscale convergence, Ann. Funct. Anal., 2 (2011), 84-99. doi: 10.15352/afa/1399900264.  Google Scholar [10] L. Flodén, A. Holmbom, M. Olsson Lindberg and J. Persson, Homogenization of parabolic equations with an arbitrary number of scales in both space and time, J. Appl. Math., 2014 (2014), Art. ID 101685, 16 pp. doi: 10.1155/2014/101685.  Google Scholar [11] L. Flodén and M. Olsson, Reiterated homogenization of some linear and nonlinear monotone parabolic operators, Can. Appl. Math. Q., 14 (2006), 149-183.  Google Scholar [12] L. Flodén and M. Olsson, Homogenization of some parabolic operators with several time scales, Appl. Math., 52 (2007), 431-446. doi: 10.1007/s10492-007-0025-2.  Google Scholar [13] M. Hairer, E. Pardoux and A. Piatnitski, Random homogenisation of a highly oscillatory singular potential, Stoch. Partial Differ. Equ. Anal. Comput., 1 (2013), 571-605. doi: 10.1007/s40072-013-0018-y.  Google Scholar [14] A. Holmbom, Homogenization of parabolic equations. An alternative approach and some corrector-type results, Appl. Math., 42 (1997), 321-343. doi: 10.1023/A:1023049608047.  Google Scholar [15] J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod; Gauthier-Villars, Paris, 1969.  Google Scholar [16] D. Lukkassen, G. Nguetseng and P. Wall, Two-scale convergence, Int. J. Pure Appl. Math., 2 (2002), 35-86.  Google Scholar [17] A. K. Nandakumaran and M. Rajesh, Homogenization of a nonlinear degenerate parabolic differential equation, Electron. J. Differential Equations, (2001), 19 pp.  Google Scholar [18] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623. doi: 10.1137/0520043.  Google Scholar [19] G. Nguetseng, Deterministic homogenization of a semilinear elliptic partial differential equation of order $2m$, Math. Rep. (Bucur.), 8 (2006), 167-195.  Google Scholar [20] G. Nguetseng, H. Nnang and N. Svanstedt, $G$-convergence and homogenization of monotone damped hyperbolic equations, Banach J. Math. Anal., 4 (2010), 100-115. doi: 10.15352/bjma/1272374674.  Google Scholar [21] G. Nguetseng, H. Nnang and N. Svanstedt, Asymptotic analysis for a weakly damped wave equation with application to a problem arising in elasticity, J. Funct. Spaces Appl., 8 (2010), 17-54. doi: 10.1155/2010/291670.  Google Scholar [22] G. Nguetseng, H. Nnang and N. Svanstedt, Deterministic homogenization of quasilinear damped hyperbolic equations, Acta Math. Sci. Ser. B Engl. Ed., 31 (2011), 1823-1850. doi: 10.1016/S0252-9602(11)60364-0.  Google Scholar [23] G. Nguetseng and J. L. Woukeng, Deterministic homogenization of parabolic monotone operators with time dependent coefficients, Electron. J. Differential Equations, (2004), 23 pp.  Google Scholar [24] G. Nguetseng and J. L. Woukeng, $\Sigma$-convergence of nonlinear parabolic operators, Nonlinear Anal., 66 (2007), 968-1004. doi: 10.1016/j.na.2005.12.035.  Google Scholar [25] H. Nnang, Deterministic homogenization of weakly damped nonlinear hyperbolic-parabolic equations, NoDEA Nonlinear Differential Equations Appl., 19 (2012), 539-574. doi: 10.1007/s00030-011-0142-1.  Google Scholar [26] L. S. Pankratov and I. D. Chueshov, Averaging of attractors of nonlinear hyperbolic equations with asymptotically degenerate coefficients, Mat. Sb., 190 (1999), 99-126. doi: 10.1070/SM1999v190n09ABEH000427.  Google Scholar [27] E. Pardoux and A. Piatnitski, Homogenization of a singular random one-dimensional PDE with time-varying coefficients, Ann. Probab., 40 (2012), 1316-1356. doi: 10.1214/11-AOP650.  Google Scholar [28] J. Persson, Selected Topics in Homogenization, Mid Sweden University Doctoral Thesis 127, 2012. (URL: http://www.diva-portal.org/smash/get/diva2:527223/FULLTEXT01.pdf.) Google Scholar [29] J. Persson, Homogenization of monotone parabolic problems with several temporal scales, Appl. Math., 57 (2012), 191-214. doi: 10.1007/s10492-012-0013-z.  Google Scholar [30] N. Svanstedt, Convergence of quasi-linear hyperbolic equations, J. Hyperbolic Differ. Equ., 4 (2007), 655-677. doi: 10.1142/S0219891607001306.  Google Scholar [31] N. Svanstedt and J. L. Woukeng, Periodic homogenization of strongly nonlinear reaction-diffusion equations with large reaction terms, Appl. Anal., 92 (2013), 1357-1378. doi: 10.1080/00036811.2012.678334.  Google Scholar [32] M. I. Vishik and B. Fidler, Quantative averaging of global attractors of hyperbolic wave equations with rapidly oscillating coefficients, Uspekhi Mat. Nauk., 57 (2002), 75-94. doi: 10.1070/RM2002v057n04ABEH000534.  Google Scholar [33] J. L. Woukeng and D. Dongo, Multiscale homogenization of nonlinear hyperbolic equations with several time scales, Acta Math. Sci. Ser. B Engl. Ed., 31 (2011), 843-856. doi: 10.1016/S0252-9602(11)60281-6.  Google Scholar [34] E. Zeidler, Nonlinear Functional Analysis and its Applications IIA. Linear Monotone Operators, Springer Verlag, New York, 1990. doi: 10.1007/978-1-4612-0985-0.  Google Scholar
 [1] Fabio Camilli, Claudio Marchi. On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems. Networks & Heterogeneous Media, 2011, 6 (1) : 61-75. doi: 10.3934/nhm.2011.6.61 [2] Y. Efendiev, B. Popov. On homogenization of nonlinear hyperbolic equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 295-309. doi: 10.3934/cpaa.2005.4.295 [3] Alexander Mielke. Weak-convergence methods for Hamiltonian multiscale problems. Discrete & Continuous Dynamical Systems, 2008, 20 (1) : 53-79. doi: 10.3934/dcds.2008.20.53 [4] Jie Zhao. Convergence rates for elliptic reiterated homogenization problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2787-2795. doi: 10.3934/cpaa.2013.12.2787 [5] Jean Louis Woukeng. $\sum$-convergence and reiterated homogenization of nonlinear parabolic operators. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1753-1789. doi: 10.3934/cpaa.2010.9.1753 [6] Dag Lukkassen, Annette Meidell, Peter Wall. Multiscale homogenization of monotone operators. Discrete & Continuous Dynamical Systems, 2008, 22 (3) : 711-727. doi: 10.3934/dcds.2008.22.711 [7] Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks & Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014 [8] Assyr Abdulle, Yun Bai, Gilles Vilmart. Reduced basis finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 91-118. doi: 10.3934/dcdss.2015.8.91 [9] Walter Allegretto, Yanping Lin, Zhiyong Zhang. Convergence to convection-diffusion waves for solutions to dissipative nonlinear evolution equations. Conference Publications, 2009, 2009 (Special) : 11-23. doi: 10.3934/proc.2009.2009.11 [10] Nils Svanstedt. Multiscale stochastic homogenization of monotone operators. Networks & Heterogeneous Media, 2007, 2 (1) : 181-192. doi: 10.3934/nhm.2007.2.181 [11] Patrick Henning. Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems. Networks & Heterogeneous Media, 2012, 7 (3) : 503-524. doi: 10.3934/nhm.2012.7.503 [12] Patrick Henning, Mario Ohlberger. Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 119-150. doi: 10.3934/dcdss.2015.8.119 [13] Zhanying Yang. Homogenization and correctors for the hyperbolic problems with imperfect interfaces via the periodic unfolding method. Communications on Pure & Applied Analysis, 2014, 13 (1) : 249-272. doi: 10.3934/cpaa.2014.13.249 [14] Erik Kropat. Homogenization of optimal control problems on curvilinear networks with a periodic microstructure --Results on $\boldsymbol{S}$-homogenization and $\boldsymbol{Γ}$-convergence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 51-76. doi: 10.3934/naco.2017003 [15] Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380 [16] Eric Cancès, Claude Le Bris. Convergence to equilibrium of a multiscale model for suspensions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 449-470. doi: 10.3934/dcdsb.2006.6.449 [17] Miroslav Grmela, Michal Pavelka. Landau damping in the multiscale Vlasov theory. Kinetic & Related Models, 2018, 11 (3) : 521-545. doi: 10.3934/krm.2018023 [18] Marco Squassina. Preface: Recent progresses in the theory of nonlinear nonlocal problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : i-i. doi: 10.3934/dcdss.201803i [19] Bruno Fornet, O. Guès. Penalization approach to semi-linear symmetric hyperbolic problems with dissipative boundary conditions. Discrete & Continuous Dynamical Systems, 2009, 23 (3) : 827-845. doi: 10.3934/dcds.2009.23.827 [20] Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

2020 Impact Factor: 1.213