-
Previous Article
Linear approximation of nonlinear Schrödinger equations driven by cylindrical Wiener processes
- DCDS-B Home
- This Issue
-
Next Article
Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions
Semilinear stochastic equations with bilinear fractional noise
1. | Dpto. Ecuaciones Diferenciales y Análisis Numérico , Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla |
2. | Charles University in Prague, Faculty of Mathematics and Physics, Sokolovska 83, Prague 8, Czech Republic, Czech Republic |
References:
[1] |
L. Arnold, Random Dynamical Systems,, Springer Monographs in Mathematics, (1998).
doi: 10.1007/978-3-662-12878-7. |
[2] |
H. Bessaih, M. J. Garrido-Atienza and B. Schmalfuß, Stochastic Shell Models driven by a multiplicative fractional Brownian motion,, Physica D: Nonlinear Phenomena, 320 (2016), 38.
doi: 10.1016/j.physd.2016.01.008. |
[3] |
C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions,, Lecture Notes in Mathematics, (1977).
|
[4] |
Y. Chen, H. Gao, M. J. Garrido-Atienza and B. Schmalfuß, Pathwise solutions of SPDEs and random dynamical systems,, Discrete Contin. Dyn. Syst., 34 (2014), 79.
doi: 10.3934/dcds.2014.34.79. |
[5] |
J. W. Cholewa and T. Dlotko, Cauchy problems in weighted Lebesgue spaces,, Czechoslovak Math. J., 54 (2004), 991.
doi: 10.1007/s10587-004-6447-z. |
[6] |
G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems,, Cambridge University Press, (1996).
doi: 10.1017/CBO9780511662829. |
[7] |
T. E. Duncan, B. Maslowski and B. Pasik-Duncan, Stochastic equations in Hilbert space with a multiplicative fractional Gaussian noise,, Stochastic Process. Appl., 115 (2005), 1357.
doi: 10.1016/j.spa.2005.03.011. |
[8] |
F. Flandoli and B. Schmalfuß, Random attractors for the $3$D stochastic Navier-Stokes equation with multiplicative white noise,, Stochastics Stochastics Rep., 59 (1996), 21.
doi: 10.1080/17442509608834083. |
[9] |
H. Gao, M. J. Garrido-Atienza, B. Schmalfuß, Random attractors for stochastic evolution equations driven by fractional Brownian motion,, SIAM J. Math. Anal., 46 (2014), 2281.
doi: 10.1137/130930662. |
[10] |
M. J. Garrido-Atienza, P. Kloeden and A. Neuenkirch, Discretization of stationary solutions of stochastic systems driven by fractional Brownian motion,, Applied Mathematics and Optimization, 60 (2009), 151.
doi: 10.1007/s00245-008-9062-9. |
[11] |
M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion,, Discrete and Continuous Dynamical System, 14 (2010), 473.
doi: 10.3934/dcdsb.2010.14.473. |
[12] |
M. J. Garrido-Atienza, B. Maslowski and B. Schmalfuß, Random attractors for stochastic equations driven by a fractional Brownian motion,, International Journal of Bifurcation and Chaos, 20 (2010), 2761.
doi: 10.1142/S0218127410027349. |
[13] |
M. J. Garrido-Atienza and B. Schmalfuß, Ergodicity of the infinite dimensional fractional Brownian motion,, Journal of Dynamics and Differential Equations, 23 (2011), 671.
doi: 10.1007/s10884-011-9222-5. |
[14] |
B. Gess, Random Attractors for Stochastic Porous Media Equations perturbed by space-time linear multiplicative noise,, C.R. Acad. Sci. Paris, 350 (2012), 299.
doi: 10.1016/j.crma.2012.02.004. |
[15] |
B. Gess, W. Liu and M. Röckner, Random attractors for a class of stochastic partial differential equations driven by general additive noise,, Journal of Differential Equations, 251 (2011), 1225.
doi: 10.1016/j.jde.2011.02.013. |
[16] |
H. Kunita, Stochastic Flows and Stochastic Differential Equations,, Cambridge Studies in Advanced Mathematics, (1990).
|
[17] |
M. B. Marcus and J. Rosen, Markov Processes, Gaussian Processes, and Local Times,, Cambridge Studies in Advanced Mathematics, (2006).
doi: 10.1017/CBO9780511617997. |
[18] |
B. Maslowski and D. Nualart, Evolution equations driven by a fractional Brownian motion,, J. Funct. Anal., 202 (2003), 277.
doi: 10.1016/S0022-1236(02)00065-4. |
[19] |
B. Maslowski and B. Schmalfuß, Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion,, Stochastic Anal. Appl., 22 (2004), 1577.
doi: 10.1081/SAP-200029498. |
[20] |
B. Maslowski and J. Šnupárková, Stochastic equations with multiplicative fractional noise in Hilbert space,, preprint, (). Google Scholar |
[21] |
D. Nualart and A. Răşcanu, Differential equations driven by fractional Brownian motion,, Collect. Math., 53 (2002), 55.
|
[22] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).
doi: 10.1007/978-1-4612-5561-1. |
[23] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications,, Gordon and Breach, (1993).
|
[24] |
B. Schmalfuß, Backward cocycles and attractors of stochastic differential equations,, in Int. Seminar on Applied Mathematics Nonlinear Dynamics: Attractor Approximation and Global Behaviour (eds. V. Reitmann, (1992), 185. Google Scholar |
[25] |
B. Schmalfuß, Attractors for the nonautonomous dynamical systems,, in Int. Conf. Differential Equations, (1999), 684.
|
[26] |
J. Šnupárková, Stochastic bilinear equations with fractional Gaussian noise in Hilbert space,, Acta Univ. Carolin. Math. Phys., 51 (2010), 49.
|
[27] |
M. Zähle, Integration with respect to fractal functions and stochastic calculus I,, Probab. Theory Relat. Fields, 111 (1998), 333.
doi: 10.1007/s004400050171. |
[28] |
M. Zähle, Integration with respect to fractal functions and stochastic calculus II,, Math. Nachr., 225 (2001), 145.
doi: 10.1002/1522-2616(200105)225:1<145::AID-MANA145>3.0.CO;2-0. |
show all references
References:
[1] |
L. Arnold, Random Dynamical Systems,, Springer Monographs in Mathematics, (1998).
doi: 10.1007/978-3-662-12878-7. |
[2] |
H. Bessaih, M. J. Garrido-Atienza and B. Schmalfuß, Stochastic Shell Models driven by a multiplicative fractional Brownian motion,, Physica D: Nonlinear Phenomena, 320 (2016), 38.
doi: 10.1016/j.physd.2016.01.008. |
[3] |
C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions,, Lecture Notes in Mathematics, (1977).
|
[4] |
Y. Chen, H. Gao, M. J. Garrido-Atienza and B. Schmalfuß, Pathwise solutions of SPDEs and random dynamical systems,, Discrete Contin. Dyn. Syst., 34 (2014), 79.
doi: 10.3934/dcds.2014.34.79. |
[5] |
J. W. Cholewa and T. Dlotko, Cauchy problems in weighted Lebesgue spaces,, Czechoslovak Math. J., 54 (2004), 991.
doi: 10.1007/s10587-004-6447-z. |
[6] |
G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems,, Cambridge University Press, (1996).
doi: 10.1017/CBO9780511662829. |
[7] |
T. E. Duncan, B. Maslowski and B. Pasik-Duncan, Stochastic equations in Hilbert space with a multiplicative fractional Gaussian noise,, Stochastic Process. Appl., 115 (2005), 1357.
doi: 10.1016/j.spa.2005.03.011. |
[8] |
F. Flandoli and B. Schmalfuß, Random attractors for the $3$D stochastic Navier-Stokes equation with multiplicative white noise,, Stochastics Stochastics Rep., 59 (1996), 21.
doi: 10.1080/17442509608834083. |
[9] |
H. Gao, M. J. Garrido-Atienza, B. Schmalfuß, Random attractors for stochastic evolution equations driven by fractional Brownian motion,, SIAM J. Math. Anal., 46 (2014), 2281.
doi: 10.1137/130930662. |
[10] |
M. J. Garrido-Atienza, P. Kloeden and A. Neuenkirch, Discretization of stationary solutions of stochastic systems driven by fractional Brownian motion,, Applied Mathematics and Optimization, 60 (2009), 151.
doi: 10.1007/s00245-008-9062-9. |
[11] |
M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion,, Discrete and Continuous Dynamical System, 14 (2010), 473.
doi: 10.3934/dcdsb.2010.14.473. |
[12] |
M. J. Garrido-Atienza, B. Maslowski and B. Schmalfuß, Random attractors for stochastic equations driven by a fractional Brownian motion,, International Journal of Bifurcation and Chaos, 20 (2010), 2761.
doi: 10.1142/S0218127410027349. |
[13] |
M. J. Garrido-Atienza and B. Schmalfuß, Ergodicity of the infinite dimensional fractional Brownian motion,, Journal of Dynamics and Differential Equations, 23 (2011), 671.
doi: 10.1007/s10884-011-9222-5. |
[14] |
B. Gess, Random Attractors for Stochastic Porous Media Equations perturbed by space-time linear multiplicative noise,, C.R. Acad. Sci. Paris, 350 (2012), 299.
doi: 10.1016/j.crma.2012.02.004. |
[15] |
B. Gess, W. Liu and M. Röckner, Random attractors for a class of stochastic partial differential equations driven by general additive noise,, Journal of Differential Equations, 251 (2011), 1225.
doi: 10.1016/j.jde.2011.02.013. |
[16] |
H. Kunita, Stochastic Flows and Stochastic Differential Equations,, Cambridge Studies in Advanced Mathematics, (1990).
|
[17] |
M. B. Marcus and J. Rosen, Markov Processes, Gaussian Processes, and Local Times,, Cambridge Studies in Advanced Mathematics, (2006).
doi: 10.1017/CBO9780511617997. |
[18] |
B. Maslowski and D. Nualart, Evolution equations driven by a fractional Brownian motion,, J. Funct. Anal., 202 (2003), 277.
doi: 10.1016/S0022-1236(02)00065-4. |
[19] |
B. Maslowski and B. Schmalfuß, Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion,, Stochastic Anal. Appl., 22 (2004), 1577.
doi: 10.1081/SAP-200029498. |
[20] |
B. Maslowski and J. Šnupárková, Stochastic equations with multiplicative fractional noise in Hilbert space,, preprint, (). Google Scholar |
[21] |
D. Nualart and A. Răşcanu, Differential equations driven by fractional Brownian motion,, Collect. Math., 53 (2002), 55.
|
[22] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).
doi: 10.1007/978-1-4612-5561-1. |
[23] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications,, Gordon and Breach, (1993).
|
[24] |
B. Schmalfuß, Backward cocycles and attractors of stochastic differential equations,, in Int. Seminar on Applied Mathematics Nonlinear Dynamics: Attractor Approximation and Global Behaviour (eds. V. Reitmann, (1992), 185. Google Scholar |
[25] |
B. Schmalfuß, Attractors for the nonautonomous dynamical systems,, in Int. Conf. Differential Equations, (1999), 684.
|
[26] |
J. Šnupárková, Stochastic bilinear equations with fractional Gaussian noise in Hilbert space,, Acta Univ. Carolin. Math. Phys., 51 (2010), 49.
|
[27] |
M. Zähle, Integration with respect to fractal functions and stochastic calculus I,, Probab. Theory Relat. Fields, 111 (1998), 333.
doi: 10.1007/s004400050171. |
[28] |
M. Zähle, Integration with respect to fractal functions and stochastic calculus II,, Math. Nachr., 225 (2001), 145.
doi: 10.1002/1522-2616(200105)225:1<145::AID-MANA145>3.0.CO;2-0. |
[1] |
María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473 |
[2] |
Ahmed Boudaoui, Tomás Caraballo, Abdelghani Ouahab. Stochastic differential equations with non-instantaneous impulses driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2521-2541. doi: 10.3934/dcdsb.2017084 |
[3] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[4] |
Ji Shu. Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations driven by fractional Brownian motions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1587-1599. doi: 10.3934/dcdsb.2017077 |
[5] |
Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255 |
[6] |
Yong Xu, Rong Guo, Di Liu, Huiqing Zhang, Jinqiao Duan. Stochastic averaging principle for dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1197-1212. doi: 10.3934/dcdsb.2014.19.1197 |
[7] |
Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2257-2267. doi: 10.3934/dcdsb.2015.20.2257 |
[8] |
Yuncheng You. Random attractor for stochastic reversible Schnackenberg equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1347-1362. doi: 10.3934/dcdss.2014.7.1347 |
[9] |
Litan Yan, Xiuwei Yin. Optimal error estimates for fractional stochastic partial differential equation with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 615-635. doi: 10.3934/dcdsb.2018199 |
[10] |
Jin Li, Jianhua Huang. Dynamics of a 2D Stochastic non-Newtonian fluid driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2483-2508. doi: 10.3934/dcdsb.2012.17.2483 |
[11] |
Yong Ren, Xuejuan Jia, Lanying Hu. Exponential stability of solutions to impulsive stochastic differential equations driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2157-2169. doi: 10.3934/dcdsb.2015.20.2157 |
[12] |
Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401 |
[13] |
Henryk Leszczyński, Monika Wrzosek. Newton's method for nonlinear stochastic wave equations driven by one-dimensional Brownian motion. Mathematical Biosciences & Engineering, 2017, 14 (1) : 237-248. doi: 10.3934/mbe.2017015 |
[14] |
Tyrone E. Duncan. Some linear-quadratic stochastic differential games for equations in Hilbert spaces with fractional Brownian motions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5435-5445. doi: 10.3934/dcds.2015.35.5435 |
[15] |
Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281 |
[16] |
Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757 |
[17] |
María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Local pathwise solutions to stochastic evolution equations driven by fractional Brownian motions with Hurst parameters $H\in (1/3,1/2]$. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2553-2581. doi: 10.3934/dcdsb.2015.20.2553 |
[18] |
Monia Karouf. Reflected solutions of backward doubly SDEs driven by Brownian motion and Poisson random measure. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5571-5601. doi: 10.3934/dcds.2019245 |
[19] |
S. Kanagawa, K. Inoue, A. Arimoto, Y. Saisho. Mean square approximation of multi dimensional reflecting fractional Brownian motion via penalty method. Conference Publications, 2005, 2005 (Special) : 463-475. doi: 10.3934/proc.2005.2005.463 |
[20] |
Stefan Koch, Andreas Neuenkirch. The Mandelbrot-van Ness fractional Brownian motion is infinitely differentiable with respect to its Hurst parameter. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3865-3880. doi: 10.3934/dcdsb.2018334 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]