# American Institute of Mathematical Sciences

November  2017, 37(11): 5731-5746. doi: 10.3934/dcds.2017248

## A Liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions

 1 Departamento de Análisis Matemático, Universidad de La Laguna, C/. Astrofísico Francisco Sánchez s/n, 38200 -La Laguna, Spain 2 CONICET-Departamento de Matemática y Estadística, Universidad Torcuato Di Tella, Av. Figueroa Alcorta 7350, (C1428BCW), C. A. de Buenos Aires, Argentina 3 Instituto Universitario de Estudios Avanzados (IUdEA) en Física Atómica, Molecular y Fotónica, Universidad de La Laguna, C/. Astrofísico Francisco Sánchez s/n, 38200 -La Laguna, Spain 4 Departamento de Matemática, Universidad Técnica Federico Santa María, Casilla V-110, Avda. España, 1680 -Valparaíso, Chile

* Corresponding author

Received  May 2017 Published  July 2017

In this work we obtain a Liouville theorem for positive, bounded solutions of the equation
 \begin{align} (-\Delta)^s u= h(x_N)f(u) \hbox{in }\mathbb{R}^{N}\end{align}
where
 $(-\Delta)^s$
stands for the fractional Laplacian with
 $s∈ (0, 1)$
, and the functions
 $h$
and
 $f$
are nondecreasing. The main feature is that the function
 $h$
 $\mathbb R$
, therefore the problem is sometimes termed as indefinite. As an application we obtain a priori bounds for positive solutions of some boundary value problems, which give existence of such solutions by means of bifurcation methods.
Citation: Begoña Barrios, Leandro Del Pezzo, Jorge García-Melián, Alexander Quaas. A Liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5731-5746. doi: 10.3934/dcds.2017248
##### References:
 [1] S. Alama and G. Tarantello, On semilinear elliptic equations with indefinite nonlinearities, Var. Partial Differential Equations, 1 (1993), 439-475.  doi: 10.1007/BF01206962.  Google Scholar [2] S. Alama and G. Tarantello, Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal., 141 (1996), 159-215.  doi: 10.1006/jfan.1996.0125.  Google Scholar [3] H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Differential Equations, 146 (1998), 336-374.  doi: 10.1006/jdeq.1998.3440.  Google Scholar [4] B. Barrios, L. Del Pezzo, J. García-Melián and A. Quaas, Monotonicity of solutions for some nonlocal elliptic problems in half-spaces, Calc. Var. Partial Differential Equations, 56 (2017), 16pp. doi: 10.1007/s00526-017-1133-9.  Google Scholar [5] B. Barrios, L. Del Pezzo, J. García-Melián and A. Quaas, A priori bounds and existence of solutions for some nonlocal elliptic problems, To appear in Rev. Mat. Iberoamericana Available from: https://arxiv.org/abs/1506.04289 Google Scholar [6] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal., 4 (1994), 59-78.  doi: 10.12775/TMNA.1994.023.  Google Scholar [7] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, NoDEA Nonlinear Differential Equations Appl., 2 (1995), 553-572.  doi: 10.1007/BF01210623.  Google Scholar [8] G. Bianchi, Non-existence of positive solutions to semilinear elliptic equations on $\mathbb R^n$ or $\mathbb R^n_+$ through the method of moving planes, Comm. Partial Differential Equations, 22 (1997), 1671-1690.  doi: 10.1080/03605309708821315.  Google Scholar [9] K. J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations, 193 (2003), 481-499.  doi: 10.1016/S0022-0396(03)00121-9.  Google Scholar [10] L. Caffarelli, J. M. Roquejoffre and Y. Sire, Variational problems with free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1151-1179.  doi: 10.4171/JEMS/226.  Google Scholar [11] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. in Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar [12] L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integrodifferential equations, Comm. Pure Appl. Math., 62 (2009), 597-638.  doi: 10.1002/cpa.20274.  Google Scholar [13] W. X. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar [14] W. X. Chen and C. Li, A priori estimates for prescribing scalar curvature equations, Ann. of Math.(2), 145 (1997), 547-564.  doi: 10.2307/2951844.  Google Scholar [15] W. X. Chen and C. Li, Moving planes, moving spheres, and a priori estimates, J. Differential Equations, 195 (2003), 1-13.  doi: 10.1016/j.jde.2003.06.004.  Google Scholar [16] W. Chen, C. Li and Y. Li, A direct blowing-up and rescaling argument on nonlocal elliptic equations, Internat. J. Math., 27 (2016), 1650064 (20 pages). doi: 10.1142/S0129167X16500646.  Google Scholar [17] W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math, 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar [18] W. Chen, Y. Li and R. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131-4157.  doi: 10.1016/j.jfa.2017.02.022.  Google Scholar [19] W. Chen and J. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations, 260 (2016), 4758-4785.  doi: 10.1016/j.jde.2015.11.029.  Google Scholar [20] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar [21] L. M. Del Pezzo and A. Quaas, Global bifurcation for fractional p-Laplacian and an application, Z. Anal. Anwend., 35 (2016), 411-447.  doi: 10.4171/ZAA/1572.  Google Scholar [22] J. Dou and H. Zhou, Liouville theorems for fractional Hénon equation and system on $\mathbb R^n$, Comm. Pure Appl. Anal., 14 (2015), 1915-1927.  doi: 10.3934/cpaa.2015.14.1915.  Google Scholar [23] Y. Du and S. Li, Nonlinear Liouville Theorems and a priori estimates for indefinite superlinear elliptic equations, Adv. Differential Equations, 10 (2005), 841-860.   Google Scholar [24] M. M. Fall and T. Weth, Monotonicity and nonexistence results for some fractional elliptic problems in the half space, Comm. Contemp. Math. , 18 (2016), 1550012 (25 pages). doi: 10.1142/S0219199715500121.  Google Scholar [25] M. Fazly and J. Wei, On stable solutions of the fractional Hénon-Lane-Emden equation, Commun. Contemp. Math., 18 (2016), 1650005 (24 pages). doi: 10.1142/S021919971650005X.  Google Scholar [26] P. Felmer and A. Quaas, Fundamental solutions and Liouville type theorems for nonlinear integral operators, Adv. Math., 226 (2011), 2712-2738.  doi: 10.1016/j.aim.2010.09.023.  Google Scholar [27] Y. Fu and B. Li, On fractional Laplacian problems with indefinite nonlinearity, Applicable Analysis, (2016), 1-17.  doi: 10.1080/00036811.2016.1249861.  Google Scholar [28] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.  Google Scholar [29] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981), 883-901.  doi: 10.1080/03605308108820196.  Google Scholar [30] S. Goyal and K. Sreenadh, Existence of multiple solutions of $p$-fractional Laplace operator with sign-changing weight function, Adv. Nonlinear Anal., 4 (2015), 37-58.  doi: 10.1515/anona-2014-0017.  Google Scholar [31] Y. Li and L. Zhang, Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations, J. Anal. Math., 90 (2003), 27-87.  doi: 10.1007/BF02786551.  Google Scholar [32] C. S. Lin, On Liouville theorem and a priori estimates for the scalar curvature equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4), 27 (1998), 107-130.   Google Scholar [33] A. Quaas, A. Salort and A. Xia, Principal eigenvalues of fully nonlinear integro-differential elliptic equations with a drift term, preprint. Available from: http://arxiv.org/abs/1605.09787 Google Scholar [34] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.  doi: 10.1016/0022-1236(71)90030-9.  Google Scholar [35] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 257-302.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar [36] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.  Google Scholar [37] R. Zhuo, W. Chen, X. Cui and Z. Yuan, A Liouville theorem for the fractional Laplacian, preprint, Available from: http://arxiv.org/abs/1401.7402 Google Scholar

show all references

##### References:
 [1] S. Alama and G. Tarantello, On semilinear elliptic equations with indefinite nonlinearities, Var. Partial Differential Equations, 1 (1993), 439-475.  doi: 10.1007/BF01206962.  Google Scholar [2] S. Alama and G. Tarantello, Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal., 141 (1996), 159-215.  doi: 10.1006/jfan.1996.0125.  Google Scholar [3] H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Differential Equations, 146 (1998), 336-374.  doi: 10.1006/jdeq.1998.3440.  Google Scholar [4] B. Barrios, L. Del Pezzo, J. García-Melián and A. Quaas, Monotonicity of solutions for some nonlocal elliptic problems in half-spaces, Calc. Var. Partial Differential Equations, 56 (2017), 16pp. doi: 10.1007/s00526-017-1133-9.  Google Scholar [5] B. Barrios, L. Del Pezzo, J. García-Melián and A. Quaas, A priori bounds and existence of solutions for some nonlocal elliptic problems, To appear in Rev. Mat. Iberoamericana Available from: https://arxiv.org/abs/1506.04289 Google Scholar [6] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal., 4 (1994), 59-78.  doi: 10.12775/TMNA.1994.023.  Google Scholar [7] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, NoDEA Nonlinear Differential Equations Appl., 2 (1995), 553-572.  doi: 10.1007/BF01210623.  Google Scholar [8] G. Bianchi, Non-existence of positive solutions to semilinear elliptic equations on $\mathbb R^n$ or $\mathbb R^n_+$ through the method of moving planes, Comm. Partial Differential Equations, 22 (1997), 1671-1690.  doi: 10.1080/03605309708821315.  Google Scholar [9] K. J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations, 193 (2003), 481-499.  doi: 10.1016/S0022-0396(03)00121-9.  Google Scholar [10] L. Caffarelli, J. M. Roquejoffre and Y. Sire, Variational problems with free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1151-1179.  doi: 10.4171/JEMS/226.  Google Scholar [11] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. in Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar [12] L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integrodifferential equations, Comm. Pure Appl. Math., 62 (2009), 597-638.  doi: 10.1002/cpa.20274.  Google Scholar [13] W. X. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar [14] W. X. Chen and C. Li, A priori estimates for prescribing scalar curvature equations, Ann. of Math.(2), 145 (1997), 547-564.  doi: 10.2307/2951844.  Google Scholar [15] W. X. Chen and C. Li, Moving planes, moving spheres, and a priori estimates, J. Differential Equations, 195 (2003), 1-13.  doi: 10.1016/j.jde.2003.06.004.  Google Scholar [16] W. Chen, C. Li and Y. Li, A direct blowing-up and rescaling argument on nonlocal elliptic equations, Internat. J. Math., 27 (2016), 1650064 (20 pages). doi: 10.1142/S0129167X16500646.  Google Scholar [17] W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math, 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar [18] W. Chen, Y. Li and R. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131-4157.  doi: 10.1016/j.jfa.2017.02.022.  Google Scholar [19] W. Chen and J. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations, 260 (2016), 4758-4785.  doi: 10.1016/j.jde.2015.11.029.  Google Scholar [20] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar [21] L. M. Del Pezzo and A. Quaas, Global bifurcation for fractional p-Laplacian and an application, Z. Anal. Anwend., 35 (2016), 411-447.  doi: 10.4171/ZAA/1572.  Google Scholar [22] J. Dou and H. Zhou, Liouville theorems for fractional Hénon equation and system on $\mathbb R^n$, Comm. Pure Appl. Anal., 14 (2015), 1915-1927.  doi: 10.3934/cpaa.2015.14.1915.  Google Scholar [23] Y. Du and S. Li, Nonlinear Liouville Theorems and a priori estimates for indefinite superlinear elliptic equations, Adv. Differential Equations, 10 (2005), 841-860.   Google Scholar [24] M. M. Fall and T. Weth, Monotonicity and nonexistence results for some fractional elliptic problems in the half space, Comm. Contemp. Math. , 18 (2016), 1550012 (25 pages). doi: 10.1142/S0219199715500121.  Google Scholar [25] M. Fazly and J. Wei, On stable solutions of the fractional Hénon-Lane-Emden equation, Commun. Contemp. Math., 18 (2016), 1650005 (24 pages). doi: 10.1142/S021919971650005X.  Google Scholar [26] P. Felmer and A. Quaas, Fundamental solutions and Liouville type theorems for nonlinear integral operators, Adv. Math., 226 (2011), 2712-2738.  doi: 10.1016/j.aim.2010.09.023.  Google Scholar [27] Y. Fu and B. Li, On fractional Laplacian problems with indefinite nonlinearity, Applicable Analysis, (2016), 1-17.  doi: 10.1080/00036811.2016.1249861.  Google Scholar [28] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.  Google Scholar [29] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981), 883-901.  doi: 10.1080/03605308108820196.  Google Scholar [30] S. Goyal and K. Sreenadh, Existence of multiple solutions of $p$-fractional Laplace operator with sign-changing weight function, Adv. Nonlinear Anal., 4 (2015), 37-58.  doi: 10.1515/anona-2014-0017.  Google Scholar [31] Y. Li and L. Zhang, Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations, J. Anal. Math., 90 (2003), 27-87.  doi: 10.1007/BF02786551.  Google Scholar [32] C. S. Lin, On Liouville theorem and a priori estimates for the scalar curvature equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4), 27 (1998), 107-130.   Google Scholar [33] A. Quaas, A. Salort and A. Xia, Principal eigenvalues of fully nonlinear integro-differential elliptic equations with a drift term, preprint. Available from: http://arxiv.org/abs/1605.09787 Google Scholar [34] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.  doi: 10.1016/0022-1236(71)90030-9.  Google Scholar [35] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 257-302.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar [36] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.  Google Scholar [37] R. Zhuo, W. Chen, X. Cui and Z. Yuan, A Liouville theorem for the fractional Laplacian, preprint, Available from: http://arxiv.org/abs/1401.7402 Google Scholar
A possible configuration for $\Omega^+$ and $\Omega^-$ in hypotheses (A).
 [1] Lishan Lin. A priori bounds and existence result of positive solutions for fractional Laplacian systems. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1517-1531. doi: 10.3934/dcds.2019065 [2] Xinjing Wang. Liouville type theorem for Fractional Laplacian system. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5253-5268. doi: 10.3934/cpaa.2020236 [3] Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067 [4] Guowei Dai, Rushun Tian, Zhitao Zhang. Global bifurcations and a priori bounds of positive solutions for coupled nonlinear Schrödinger Systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1905-1927. doi: 10.3934/dcdss.2019125 [5] Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 4003-4020. doi: 10.3934/dcdsb.2018121 [6] Rongrong Yang, Zhongxue Lü. The properties of positive solutions to semilinear equations involving the fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1073-1089. doi: 10.3934/cpaa.2019052 [7] Dengfeng Lü, Shuangjie Peng. On the positive vector solutions for nonlinear fractional Laplacian systems with linear coupling. Discrete & Continuous Dynamical Systems, 2017, 37 (6) : 3327-3352. doi: 10.3934/dcds.2017141 [8] Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069 [9] Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure & Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567 [10] Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855 [11] Dorota Bors. Application of Mountain Pass Theorem to superlinear equations with fractional Laplacian controlled by distributed parameters and boundary data. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 29-43. doi: 10.3934/dcdsb.2018003 [12] D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure & Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499 [13] Laura Baldelli, Roberta Filippucci. A priori estimates for elliptic problems via Liouville type theorems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (7) : 1883-1898. doi: 10.3934/dcdss.2020148 [14] Patrick Winkert, Rico Zacher. A priori bounds for weak solutions to elliptic equations with nonstandard growth. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 865-878. doi: 10.3934/dcdss.2012.5.865 [15] Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023 [16] Maoding Zhen, Jinchun He, Haoyuan Xu, Meihua Yang. Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6523-6539. doi: 10.3934/dcds.2019283 [17] Alexander Quaas, Aliang Xia. Existence and uniqueness of positive solutions for a class of logistic type elliptic equations in $\mathbb{R}^N$ involving fractional Laplacian. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2653-2668. doi: 10.3934/dcds.2017113 [18] Xin Yin, Wenming Zou. Positive least energy solutions for k-coupled critical systems involving fractional Laplacian. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021042 [19] Zhen Wang, Wei Wu. Bounds for the greatest eigenvalue of positive tensors. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1031-1039. doi: 10.3934/jimo.2014.10.1031 [20] Ze Cheng, Genggeng Huang. A Liouville theorem for the subcritical Lane-Emden system. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1359-1377. doi: 10.3934/dcds.2019058

2019 Impact Factor: 1.338