November  2011, 10(6): 1549-1566. doi: 10.3934/cpaa.2011.10.1549

A decomposition theorem for $BV$ functions

1. 

SISSA, via Bonomea, 265, Trieste, 34136, Italy, Italy

Received  May 2010 Revised  March 2011 Published  May 2011

The Jordan decomposition states that a function $f: R\to R$ is of bounded variation if and only if it can be written as the difference of two monotone increasing functions.
In this paper we generalize this property to real valued $BV$ functions of many variables, extending naturally the concept of monotone function. Our result is an extension of a result obtained by Alberti, Bianchini and Crippa.
A counterexample is given which prevents further extensions.
Citation: Stefano Bianchini, Daniela Tonon. A decomposition theorem for $BV$ functions. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1549-1566. doi: 10.3934/cpaa.2011.10.1549
References:
[1]

G. Alberti, S. Bianchini and G. Crippa, Invariants for weakly regular ODE flows,, to appear., ().   Google Scholar

[2]

L. Ambrosio, V. Caselles, S. Masnou and J. M. Morel, Connected components of sets of finite perimeter and applications to image processing,, J. Eur. Math. Soc. (JEMS), 3 (2001), 39.  doi: 10.1007/PL00011302.  Google Scholar

[3]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,", Oxford University Press, (2000).   Google Scholar

[4]

R. Engelking, "General Topology,", PWN, (1977).   Google Scholar

[5]

P. Hajlasz and J. Malý, Approximation in Soblev spaces of nonlinear expressions involving the gradient,, Ark. Mat., 40 (2002), 245.  doi: 10.1007/BF02384536.  Google Scholar

[6]

J. J. Manfredi, Weakly monotone functions,, J. Geom. Anal., 4 (1994), 393.   Google Scholar

show all references

References:
[1]

G. Alberti, S. Bianchini and G. Crippa, Invariants for weakly regular ODE flows,, to appear., ().   Google Scholar

[2]

L. Ambrosio, V. Caselles, S. Masnou and J. M. Morel, Connected components of sets of finite perimeter and applications to image processing,, J. Eur. Math. Soc. (JEMS), 3 (2001), 39.  doi: 10.1007/PL00011302.  Google Scholar

[3]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,", Oxford University Press, (2000).   Google Scholar

[4]

R. Engelking, "General Topology,", PWN, (1977).   Google Scholar

[5]

P. Hajlasz and J. Malý, Approximation in Soblev spaces of nonlinear expressions involving the gradient,, Ark. Mat., 40 (2002), 245.  doi: 10.1007/BF02384536.  Google Scholar

[6]

J. J. Manfredi, Weakly monotone functions,, J. Geom. Anal., 4 (1994), 393.   Google Scholar

[1]

Tomoharu Suda. Construction of Lyapunov functions using Helmholtz–Hodge decomposition. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2437-2454. doi: 10.3934/dcds.2019103

[2]

Gunther Dirr, Hiroshi Ito, Anders Rantzer, Björn S. Rüffer. Separable Lyapunov functions for monotone systems: Constructions and limitations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2497-2526. doi: 10.3934/dcdsb.2015.20.2497

[3]

Thiago Ferraiol, Mauro Patrão, Lucas Seco. Jordan decomposition and dynamics on flag manifolds. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 923-947. doi: 10.3934/dcds.2010.26.923

[4]

Dušan M. Stipanović, Claire J. Tomlin, George Leitmann. A note on monotone approximations of minimum and maximum functions and multi-objective problems. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 487-493. doi: 10.3934/naco.2011.1.487

[5]

Dominik Hafemeyer, Florian Mannel, Ira Neitzel, Boris Vexler. Finite element error estimates for one-dimensional elliptic optimal control by BV-functions. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019041

[6]

Leon Ehrenpreis. Special functions. Inverse Problems & Imaging, 2010, 4 (4) : 639-647. doi: 10.3934/ipi.2010.4.639

[7]

Sihem Mesnager, Fengrong Zhang, Yong Zhou. On construction of bent functions involving symmetric functions and their duals. Advances in Mathematics of Communications, 2017, 11 (2) : 347-352. doi: 10.3934/amc.2017027

[8]

Heping Liu, Yu Liu. Refinable functions on the Heisenberg group. Communications on Pure & Applied Analysis, 2007, 6 (3) : 775-787. doi: 10.3934/cpaa.2007.6.775

[9]

M.T. Boudjelkha. Extended Riemann Bessel functions. Conference Publications, 2005, 2005 (Special) : 121-130. doi: 10.3934/proc.2005.2005.121

[10]

Peter Giesl, Sigurdur Hafstein. Computational methods for Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : i-ii. doi: 10.3934/dcdsb.2015.20.8i

[11]

Jian-Hua Zheng. Dynamics of hyperbolic meromorphic functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2273-2298. doi: 10.3934/dcds.2015.35.2273

[12]

Janina Kotus, Mariusz Urbański. The dynamics and geometry of the Fatou functions. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 291-338. doi: 10.3934/dcds.2005.13.291

[13]

Włodzimierz M. Tulczyjew, Paweł Urbański. Regularity of generating families of functions. Journal of Geometric Mechanics, 2010, 2 (2) : 199-221. doi: 10.3934/jgm.2010.2.199

[14]

J. A. Barceló, M. Folch-Gabayet, S. Pérez-Esteva, A. Ruiz, M. C. Vilela. Elastic Herglotz functions in the plane. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1495-1505. doi: 10.3934/cpaa.2010.9.1495

[15]

Simone Vazzoler. A note on the normalization of generating functions. Journal of Geometric Mechanics, 2018, 10 (2) : 209-215. doi: 10.3934/jgm.2018008

[16]

Laura Abatangelo, Susanna Terracini. Harmonic functions in union of chambers. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5609-5629. doi: 10.3934/dcds.2015.35.5609

[17]

Constanza Riera, Pantelimon Stănică. Landscape Boolean functions. Advances in Mathematics of Communications, 2019, 13 (4) : 613-627. doi: 10.3934/amc.2019038

[18]

Sébastien Gouëzel. An interval map with a spectral gap on Lipschitz functions, but not on bounded variation functions. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1205-1208. doi: 10.3934/dcds.2009.24.1205

[19]

Jyrki Lahtonen, Gary McGuire, Harold N. Ward. Gold and Kasami-Welch functions, quadratic forms, and bent functions. Advances in Mathematics of Communications, 2007, 1 (2) : 243-250. doi: 10.3934/amc.2007.1.243

[20]

Najla Mohammed, Peter Giesl. Grid refinement in the construction of Lyapunov functions using radial basis functions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2453-2476. doi: 10.3934/dcdsb.2015.20.2453

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]