Stagnationpoint flow of a rarefied gas impinging obliquely on a plane wall
Kazuo Aoki  Department of Mechanical Engineering and Science, and Advanced Research Institute of Fluid Science and Engineering, Kyoto University, Kyoto 6068501, Japan (email) Abstract: The steady twodimensional stagnationpoint flow of a rarefied gas impinging obliquely on an infinitely wide plane wall is investigated on the basis of kinetic theory. Assuming that the overall flow field has a length scale of variation much longer than the mean free path of the gas molecules and that the Mach number based on the characteristic flow speed is as small as the Knudsen number (the mean free path divided by the overall length scale of variation), one can exploit the result of the asymptotic theory (weakly nonlinear theory) for the Boltzmann equation, developed by Sone, that describes general steady behavior of a slightly rarefied gas over a smooth boundary [Y. Sone, in: D. Dini (ed.) Rarefied Gas Dynamics, Vol. 2, pp. 737749. Editrice Tecnico Scientifica, Pisa (1971)]. By solving the fluiddynamic system of equations given by the theory, the precise description of the velocity and temperature fields around the plane wall is obtained.
Keywords: Stagnationpoint flow, rarefied gas flows,
Boltzmann equation, slip flows, kinetic theory of gases.
Received: June 2011; Available Online: November 2011. 
2014 Impact Factor1.125
