American Institute of Mathematical Sciences

October  2012, 5(5): 879-901. doi: 10.3934/dcdss.2012.5.879

Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations

 1 Department of Mathematics and Statistics, Boston University, 111 Cummington Street, Boston, MA 02215, United States 2 Institut für Analysis, Dynamik und Modellierung, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany, Germany, Germany

Received  January 2011 Revised  June 2011 Published  January 2012

It is the purpose of this paper to prove error estimates for the approximate description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations, like the Korteweg--de Vries (KdV) or the Nonlinear Schrödinger (NLS) equation. The proofs are based on a discrete Bloch wave transform of the underlying infinite-dimensional system of coupled ODEs. After this transform the existing proof for the associated approximation theorem for the NLS approximation used for the approximate description of oscillating wave packets in dispersive PDE systems transfers almost line for line. In contrast, the proof of the approximation theorem for the KdV approximation of long waves is less obvious. In a special situation we prove a first approximation result.
Citation: Martina Chirilus-Bruckner, Christopher Chong, Oskar Prill, Guido Schneider. Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 879-901. doi: 10.3934/dcdss.2012.5.879
References:

show all references

References:
 [1] Patrick Cummings, C. Eugene Wayne. Modified energy functionals and the NLS approximation. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1295-1321. doi: 10.3934/dcds.2017054 [2] Fanzhi Chen, Michael Herrmann. KdV-like solitary waves in two-dimensional FPU-lattices. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2305-2332. doi: 10.3934/dcds.2018095 [3] Alexandre N. Carvalho, Jan W. Cholewa. NLS-like equations in bounded domains: Parabolic approximation procedure. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 57-77. doi: 10.3934/dcdsb.2018005 [4] Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867 [5] Luisa Berchialla, Luigi Galgani, Antonio Giorgilli. Localization of energy in FPU chains. Discrete & Continuous Dynamical Systems, 2004, 11 (4) : 855-866. doi: 10.3934/dcds.2004.11.855 [6] Joseph A. Biello, Peter R. Kramer, Yuri Lvov. Stages of energy transfer in the FPU model. Conference Publications, 2003, 2003 (Special) : 113-122. doi: 10.3934/proc.2003.2003.113 [7] Shigeru Takata, Hitoshi Funagane, Kazuo Aoki. Fluid modeling for the Knudsen compressor: Case of polyatomic gases. Kinetic & Related Models, 2010, 3 (2) : 353-372. doi: 10.3934/krm.2010.3.353 [8] Michael Kastner, Jacques-Alexandre Sepulchre. Effective Hamiltonian for traveling discrete breathers in the FPU chain. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 719-734. doi: 10.3934/dcdsb.2005.5.719 [9] Peter R. Kramer, Joseph A. Biello, Yuri Lvov. Application of weak turbulence theory to FPU model. Conference Publications, 2003, 2003 (Special) : 482-491. doi: 10.3934/proc.2003.2003.482 [10] Rémi Carles, Erwan Faou. Energy cascades for NLS on the torus. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2063-2077. doi: 10.3934/dcds.2012.32.2063 [11] Marzia Bisi, Tommaso Ruggeri, Giampiero Spiga. Dynamical pressure in a polyatomic gas: Interplay between kinetic theory and extended thermodynamics. Kinetic & Related Models, 2018, 11 (1) : 71-95. doi: 10.3934/krm.2018004 [12] Céline Baranger, Marzia Bisi, Stéphane Brull, Laurent Desvillettes. On the Chapman-Enskog asymptotics for a mixture of monoatomic and polyatomic rarefied gases. Kinetic & Related Models, 2018, 11 (4) : 821-858. doi: 10.3934/krm.2018033 [13] Amjad Khan, Dmitry E. Pelinovsky. Long-time stability of small FPU solitary waves. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 2065-2075. doi: 10.3934/dcds.2017088 [14] Juan-Ming Yuan, Jiahong Wu. The complex KdV equation with or without dissipation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 489-512. doi: 10.3934/dcdsb.2005.5.489 [15] Raphael Stuhlmeier. KdV theory and the Chilean tsunami of 1960. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 623-632. doi: 10.3934/dcdsb.2009.12.623 [16] Jean-Paul Chehab, Georges Sadaka. On damping rates of dissipative KdV equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1487-1506. doi: 10.3934/dcdss.2013.6.1487 [17] Nate Bottman, Bernard Deconinck. KdV cnoidal waves are spectrally stable. Discrete & Continuous Dynamical Systems, 2009, 25 (4) : 1163-1180. doi: 10.3934/dcds.2009.25.1163 [18] B. Anwasia, M. Bisi, F. Salvarani, A. J. Soares. On the Maxwell-Stefan diffusion limit for a reactive mixture of polyatomic gases in non-isothermal setting. Kinetic & Related Models, 2020, 13 (1) : 63-95. doi: 10.3934/krm.2020003 [19] Niclas Bernhoff. Boundary layers for discrete kinetic models: Multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations. Kinetic & Related Models, 2017, 10 (4) : 925-955. doi: 10.3934/krm.2017037 [20] Jean-Pierre Eckmann, C. Eugene Wayne. Breathers as metastable states for the discrete NLS equation. Discrete & Continuous Dynamical Systems, 2018, 38 (12) : 6091-6103. doi: 10.3934/dcds.2018136

2019 Impact Factor: 1.233