2012, 9(2): 259-279. doi: 10.3934/mbe.2012.9.259

Qualitative analysis of a model for co-culture of bacteria and amoebae

1. 

Center for Information Technology, Bruno Kessler Foundation, via Sommarive 18, I-38123 Trento Povo, Italy

2. 

Institut de Mathématiques de Bordeaux, UMR CNRS 5251 - Case 36, Université Victor Segalen Bordeaux 2, 3ter place de la Victoire 33076 Bordeaux Cedex, France

3. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China

Received  February 2011 Revised  November 2011 Published  March 2012

In this article we analyze a mathematical model presented in [11]. The model consists of two scalar ordinary differential equations, which describe the interaction between bacteria and amoebae. We first give the sufficient conditions for the uniform persistence of the model, then we prove that the model can undergo Hopf bifurcation and Bogdanov-Takens bifurcation for some parameter values, respectively.
Citation: Laura Fumanelli, Pierre Magal, Dongmei Xiao, Xiao Yu. Qualitative analysis of a model for co-culture of bacteria and amoebae. Mathematical Biosciences & Engineering, 2012, 9 (2) : 259-279. doi: 10.3934/mbe.2012.9.259
References:
[1]

A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maier, "Theory of Bifurcations of Dynamical Systems on a Plane,'', Israel Program for Scientific Translations, (1971).   Google Scholar

[2]

R. Bogdanov, Bifurcations of a limit cycle for a family of vector fields on the plane,, Selecta. Math. Soviet., 1 (1981), 373.   Google Scholar

[3]

R. Bogdanov, Versal deformations of a singular point on the plane in the case of zero eigenvalues,, Selecta. Math. Soviet., 1 (1981), 389.   Google Scholar

[4]

S.-N. Chow and J. K. Hale, "Methods of Bifurcation Theory,'', Springer-Verlag, (1982).  doi: 10.1007/978-1-4613-8159-4.  Google Scholar

[5]

P. Cosson, L. Zulianello, O. Join-Lambert, F. Faurisson, L. Gebbie, M. Benghezal, C. Van Delden, L. K. Curty and T. Khler, Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system,, J. Bacteriol., 184 (2002), 3027.  doi: 10.1128/JB.184.11.3027-3033.2002.  Google Scholar

[6]

F. Dumortier, R. Roussarie and J. Sotomayor, Generic $3$-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension $3$,, Ergodic Theory Dynam. Systems, 7 (1987), 375.  doi: 10.1017/S0143385700004119.  Google Scholar

[7]

F. Dumortier, R. Roussarie, J. Sotomayor and H. Zoladek, "Bifurcations of Planar Vector Fields. Nilpotent Singularities and Abelian Integrals,'', Lecture Notes in Mathematics, 1480 (1991).   Google Scholar

[8]

E. M. C. D'Agata, P. Magal, D. Olivier, S. Ruan and G. F. Webb, Modeling antibiotic resistance in hospitals: The impact of minimizing treatment duration,, J. Theor. Biol., 249 (2007), 487.  doi: 10.1016/j.jtbi.2007.08.011.  Google Scholar

[9]

E. M. C. D'Agata, M. Dupont-Rouzeyrol, P. Magal, D. Olivier and S. Ruan, The impact of different antibiotic regimens on the emergence of antimicrobial-resistant bacteria,, PLoS ONE, 3 (2008), 1.   Google Scholar

[10]

R. Froquet, N. Cherix, S. E. Burr, J. Frey, S. Vilches, J. M. Tomas and P. Cosson, Alternative host model to evaluate Aeromonas virulence,, Appl. Environ. Microbiol., 73 (2007), 5657.  doi: 10.1128/AEM.00908-07.  Google Scholar

[11]

L. Fumanelli, M. Iannelli, H. A. Janjua and O. Jousson, Mathematical modeling of bacterial virulence and host-pathogen interactions in the Dictyostelium/Pseudomonas system,, J. Theor. Biol., 270 (2011), 19.  doi: 10.1016/j.jtbi.2010.11.018.  Google Scholar

[12]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,'', Mathematical Surveys and Monographs, 25 (1988).   Google Scholar

[13]

J. K. Hale and P. Waltman, Persistence in infinite dimensional systems,, SIAM J. Math. Anal., 20 (1989), 388.  doi: 10.1137/0520025.  Google Scholar

[14]

E. Kipnis, T. Sawa and J. Wiener-Kronish, Targeting mechanisms of Pseudomonas aeruginosa pathogenesis,, Medecine et Maladies Infectieuses, 36 (2006), 78.  doi: 10.1016/j.medmal.2005.10.007.  Google Scholar

[15]

C. L. Kurz and J. J. Ewbank, Infection in a dish: High-throughput analyses of bacterial pathogenesis,, Curr. Opin. Microbiol., 10 (2007), 10.  doi: 10.1016/j.mib.2006.12.001.  Google Scholar

[16]

S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response,, SIAM J. Appl. Math., 61 (2001), 1445.  doi: 10.1137/S0036139999361896.  Google Scholar

[17]

G. F. Webb, E. M. C. D'Agata, P. Magal and S. Ruan, A model of antibiotic resistant bacterial epidemics in hospitals,, Proc. Natl. Acad. Sci. USA, 102 (2005), 13343.  doi: 10.1073/pnas.0504053102.  Google Scholar

[18]

D. Xiao and S. Ruan, Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting,, in, 21 (1999), 493.   Google Scholar

[19]

Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, "Qualitative Theory of Differential Equations,'', Transl. Math. Monogr., 101 (1992).   Google Scholar

show all references

References:
[1]

A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maier, "Theory of Bifurcations of Dynamical Systems on a Plane,'', Israel Program for Scientific Translations, (1971).   Google Scholar

[2]

R. Bogdanov, Bifurcations of a limit cycle for a family of vector fields on the plane,, Selecta. Math. Soviet., 1 (1981), 373.   Google Scholar

[3]

R. Bogdanov, Versal deformations of a singular point on the plane in the case of zero eigenvalues,, Selecta. Math. Soviet., 1 (1981), 389.   Google Scholar

[4]

S.-N. Chow and J. K. Hale, "Methods of Bifurcation Theory,'', Springer-Verlag, (1982).  doi: 10.1007/978-1-4613-8159-4.  Google Scholar

[5]

P. Cosson, L. Zulianello, O. Join-Lambert, F. Faurisson, L. Gebbie, M. Benghezal, C. Van Delden, L. K. Curty and T. Khler, Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system,, J. Bacteriol., 184 (2002), 3027.  doi: 10.1128/JB.184.11.3027-3033.2002.  Google Scholar

[6]

F. Dumortier, R. Roussarie and J. Sotomayor, Generic $3$-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension $3$,, Ergodic Theory Dynam. Systems, 7 (1987), 375.  doi: 10.1017/S0143385700004119.  Google Scholar

[7]

F. Dumortier, R. Roussarie, J. Sotomayor and H. Zoladek, "Bifurcations of Planar Vector Fields. Nilpotent Singularities and Abelian Integrals,'', Lecture Notes in Mathematics, 1480 (1991).   Google Scholar

[8]

E. M. C. D'Agata, P. Magal, D. Olivier, S. Ruan and G. F. Webb, Modeling antibiotic resistance in hospitals: The impact of minimizing treatment duration,, J. Theor. Biol., 249 (2007), 487.  doi: 10.1016/j.jtbi.2007.08.011.  Google Scholar

[9]

E. M. C. D'Agata, M. Dupont-Rouzeyrol, P. Magal, D. Olivier and S. Ruan, The impact of different antibiotic regimens on the emergence of antimicrobial-resistant bacteria,, PLoS ONE, 3 (2008), 1.   Google Scholar

[10]

R. Froquet, N. Cherix, S. E. Burr, J. Frey, S. Vilches, J. M. Tomas and P. Cosson, Alternative host model to evaluate Aeromonas virulence,, Appl. Environ. Microbiol., 73 (2007), 5657.  doi: 10.1128/AEM.00908-07.  Google Scholar

[11]

L. Fumanelli, M. Iannelli, H. A. Janjua and O. Jousson, Mathematical modeling of bacterial virulence and host-pathogen interactions in the Dictyostelium/Pseudomonas system,, J. Theor. Biol., 270 (2011), 19.  doi: 10.1016/j.jtbi.2010.11.018.  Google Scholar

[12]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,'', Mathematical Surveys and Monographs, 25 (1988).   Google Scholar

[13]

J. K. Hale and P. Waltman, Persistence in infinite dimensional systems,, SIAM J. Math. Anal., 20 (1989), 388.  doi: 10.1137/0520025.  Google Scholar

[14]

E. Kipnis, T. Sawa and J. Wiener-Kronish, Targeting mechanisms of Pseudomonas aeruginosa pathogenesis,, Medecine et Maladies Infectieuses, 36 (2006), 78.  doi: 10.1016/j.medmal.2005.10.007.  Google Scholar

[15]

C. L. Kurz and J. J. Ewbank, Infection in a dish: High-throughput analyses of bacterial pathogenesis,, Curr. Opin. Microbiol., 10 (2007), 10.  doi: 10.1016/j.mib.2006.12.001.  Google Scholar

[16]

S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response,, SIAM J. Appl. Math., 61 (2001), 1445.  doi: 10.1137/S0036139999361896.  Google Scholar

[17]

G. F. Webb, E. M. C. D'Agata, P. Magal and S. Ruan, A model of antibiotic resistant bacterial epidemics in hospitals,, Proc. Natl. Acad. Sci. USA, 102 (2005), 13343.  doi: 10.1073/pnas.0504053102.  Google Scholar

[18]

D. Xiao and S. Ruan, Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting,, in, 21 (1999), 493.   Google Scholar

[19]

Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, "Qualitative Theory of Differential Equations,'', Transl. Math. Monogr., 101 (1992).   Google Scholar

[1]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[2]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[3]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[4]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[5]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[6]

Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61

[7]

Brandy Rapatski, James Yorke. Modeling HIV outbreaks: The male to female prevalence ratio in the core population. Mathematical Biosciences & Engineering, 2009, 6 (1) : 135-143. doi: 10.3934/mbe.2009.6.135

[8]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[9]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[10]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[11]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[12]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[13]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[14]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[15]

Hsin-Lun Li. Mixed Hegselmann-Krause dynamics. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021084

[16]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[17]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[18]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[19]

Yuyue Zhang, Jicai Huang, Qihua Huang. The impact of toxins on competition dynamics of three species in a polluted aquatic environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3043-3068. doi: 10.3934/dcdsb.2020219

[20]

Yongjian Liu, Qiujian Huang, Zhouchao Wei. Dynamics at infinity and Jacobi stability of trajectories for the Yang-Chen system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3357-3380. doi: 10.3934/dcdsb.2020235

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (0)

[Back to Top]