2012, 2(2): 413-435. doi: 10.3934/naco.2012.2.413

Control design of linear systems with saturating actuators: A survey

1. 

Systems Engineering Department, King Fahd University of Petroleum and Minerals, P. O. Box 985, Dhahran 31261, Saudi Arabia

2. 

Systems Engineering Department, King Fahd University of Petroleum and Minerals, P. O. Box 5067, Dhahran 31261, Saudi Arabia

Received  April 2011 Revised  March 2012 Published  May 2012

In this paper, a survey of the extensive research investigation performed on linear systems subject to saturation including actuator, output and state types is presented. The survey takes into consideration several technical views on the analysis and design procedures leading to global or semi-global stability results and outlines basic assumptions. Research works on the design of linear feedback laws, decentralized controllers are equally emphasized. Results related stability with enlarging the domain of attraction and systems subject to multi-layered nested saturations are provided. Some typical examples are given to illustrate relevant issues.
Citation: Magdi S. Mahmoud, Mohammed M. Hussain. Control design of linear systems with saturating actuators: A survey. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 413-435. doi: 10.3934/naco.2012.2.413
References:
[1]

A. Bateman and Z. Lin, An analysis and design method for linear systems under nested saturation,, System Control Letters, 8 (2003), 41. doi: 10.1016/S0167-6911(02)00246-3. Google Scholar

[2]

D. S. Bernstein, A chronological bibliography on saturating actuators,, Int. J. Robust and Nonlinear Control, 5 (1995), 375. doi: 10.1002/rnc.4590050502. Google Scholar

[3]

D. S. Bernstein and A. N. Michel, Special issue on saturating actuators,, Int. J. Robust and Nonlinear Control, 5 (1995), 375. Google Scholar

[4]

D. S. Bernstein and A. N. Michel, A chronological bibliography on saturating actuators,, Int. J. Robust Nonlinear Control, 5 (1995), 75. doi: 10.1002/rnc.4590050502. Google Scholar

[5]

Y. Cao, Z. Lin and D. G. Ward, An anti windup approach to enlarging domain o attraction for linear systems subject to actuator saturation and disturbance,, IEEE Trans on Automatic Control, 47 (2002), 140. doi: 10.1109/9.981734. Google Scholar

[6]

D. Dai, T. Hu, A. R. Teel and L. Zaccarian, Case Studies on the control input constrained linear plants via output feedback containing an internal dead zone loop,, In, (2007), 313. doi: 10.1007/978-3-540-37010-9_11. Google Scholar

[7]

D. Dai, T. Hu, A. R. Teel and L. Zaccarian, Control of saturated linear plants via output feedback containing an internal dead zone loop,, Proc. 2006 ACC, (2006), 5239. Google Scholar

[8]

D. Dai, T. Hu, A. R. Teel and L. Zaccarian, Output feedback design for saturated linear plants using dead zone loops,, Automatica, 45 (2009), 2917. doi: 10.1016/j.automatica.2009.09.022. Google Scholar

[9]

D. Dai, T. Hu, A. R. Teel and L. Zaccarian, Piecewise-quadratic Lyapunov functions for systems with dead zones or saturations,, System and Control Letters, 58 (2009), 365. doi: 10.1016/j.sysconle.2009.01.003. Google Scholar

[10]

C. Deliu, B. Malek, S. Roy, A. Saberi and A. A. Stoorvogel, Decentralized control of discrete-time linear time invariant systems with input saturation,, Int. J. Robust and Nonlinear Control, 20 (2010), 1353. Google Scholar

[11]

H. Fang, Z. Lin and T. Hu, Analysis of linear systems in the presence of Actuator saturation and L2-disturbances,, Automatica, 40 (2004), 1229. doi: 10.1016/j.automatica.2004.02.009. Google Scholar

[12]

H. Fang and L. Lin, Stability analysis for linear systems under state constraints, IEEE Trans. Autom. Control, 49 (2004), 950. doi: 10.1109/TAC.2004.829614. Google Scholar

[13]

J. M. Gomes da Silva, Jr. and S. Tarboureich, Anti-windup design with guaranteed regions of stability: an LMI based approach,, IEEE Trans. Autom. Control, 50 (2005), 106. doi: 10.1109/TAC.2004.841128. Google Scholar

[14]

G. Grimm, J. Hatfield, I. Postlethwaite, A. R. Teel, M. C. Turner and L. Zaccarian, Anti windup for stable linear systems with input saturation: an LMI based synthesis,, IEEE Trans Automatic Control, 48 (2003), 1509. doi: 10.1109/TAC.2003.816965. Google Scholar

[15]

W. Guan and G. H. Yang, Analysis and design of output feedback control systems in the presence of actuator saturation,, American Control Conference, (2009). Google Scholar

[16]

W. Guan and G. H. Yang, New controller design method for continuous-time systems with state saturation,, IET Control Theory Appl., 4 (2010), 1889. doi: 10.1049/iet-cta.2009.0433. Google Scholar

[17]

J. M. Gomes da Silva Jr., S. Tarbouriech and R. Reginatto, Analysis of regions of stability of for linear systems with saturating inputs through an anti-windup scheme,, Proc. IEEE Conf. Control Applications, (2002), 1106. Google Scholar

[18]

H. F. Grip, A. Saberi and X. Wang, Stabilization of multiple-input multiple-output linear systems with saturated outputs,, IEEE Trans. on Autom. Control, 55 (2010), 2160. Google Scholar

[19]

L. Hou and A. N. Michel, Asymptotic stability of systems with saturation constraints,, Proc. 35th IEEE Conf. on Decision Control, (1996), 2624. Google Scholar

[20]

T. Hu, Z. Lin and B. M. Chen, An analysis and deign method for linear systems subject to actuator saturation and disturbance,, Automatica, 38 (2002), 351. doi: 10.1016/S0005-1098(01)00209-6. Google Scholar

[21]

T. Hu and Z. Lin, "Control Systems with Actuator Saturation: Analysis and Design,", Birkhauser-Boston, (2001). doi: 10.1007/978-1-4612-0205-9. Google Scholar

[22]

T. Hu, A. R. Teel and L. Zaccarian, Anti-windup synthesis for linear control systems with input saturation: achieving regional, nonlinear performance,, Automatica, 44 (2008), 512. doi: 10.1016/j.automatica.2007.06.003. Google Scholar

[23]

T. Hu, A. R. Teel and L. Zaccarian, An analysis and design method for linear systems subject to actuator saturation and disturbances,, Automatica, 38 (2002), 351. doi: 10.1016/S0005-1098(01)00209-6. Google Scholar

[24]

T. Hu, A. R. Teel and L. Zaccarian, Stability and performance for saturated systems via quadratic and non-quadratic Lyapunov functions,, IEEE Trans. Autom. Control, 51 (2006), 2017. doi: 10.1109/TAC.2006.884942. Google Scholar

[25]

V. Kapilla and K. Grigoriadis, "Actuator Saturation Control,", Marcel Dekker, (2002). doi: 10.1201/9780203910818. Google Scholar

[26]

G. Kreisselmeier, Stabilization of linear systems in the presence of output measurement saturation, System Control Letters, 29 (1996), 27. doi: 10.1016/0167-6911(96)00048-5. Google Scholar

[27]

Z. Li, A. Saberi and A. A. Stoorvogel, Semiglobal stabilization of linear discrete-time systems subject to input saturation via linear feedback-an ARE based approach,, IEEE Trans. on Autom. Control, 41 (1996), 1203. Google Scholar

[28]

Z. Lin, "Low Gain Feedback,", Springer-Verlag, (1998). Google Scholar

[29]

Z. Lin and T. Hu, Semi-global Stabilization of linear systems subject to output saturation,, System Control Letters, 43 (2001), 211. doi: 10.1016/S0167-6911(01)00099-8. Google Scholar

[30]

D. Liu and A. N. Michel, "Dynamical Systems with Saturation Nonlinearities,", London, (1994). doi: 10.1007/BFb0032146. Google Scholar

[31]

L. Lu, Z. Lin and A. Bateman, Decentralized state feedback design for large-scale linear systems subject to input saturation,, IET Control Theory Appl., 4 (2010), 206. doi: 10.1049/iet-cta.2008.0605. Google Scholar

[32]

L. Lu, Z. Lin and A. Bateman, Decentralized Control design for large scale linear systems in the presence of multi-layer Nested Saturation,, Proc. IEEE Intl. Symp. on Intelligent Control-IEEE Multi-conference on Systems and Control, (2009). Google Scholar

[33]

M. S. Mahmoud, "Decentralized Control and Filtering in Interconnected Dynamical Systems,", CRC Press, (2010). doi: 10.1201/b10349. Google Scholar

[34]

C. Pittet, S. Tarbourhiech and C. Burgat, Output feedback synthesis via the circle criterion for linear systems subject to saturating inputs,, Proc. the 37th Conference on Decision and Control, (1998). Google Scholar

[35]

I. Postlethwaite, M. Turner and G. Herrmann, Robust control applications,, Annual Reviews in Control, 31 (2007), 27. doi: 10.1016/j.arcontrol.2007.02.003. Google Scholar

[36]

A. Saberi, Z. Lin and A. R. Teel, Control of linear systems with saturating actuators,, IEEE Trans. Automat. Contr., 41 (1996), 368. doi: 10.1109/9.486638. Google Scholar

[37]

A. Saberi and A. A. Stoorvogel, Special issue on control problems with constraints,, Int. Journal of Robust and Nonlinear Control, 9 (1999), 583. Google Scholar

[38]

A. Saberi, A. A. Stoorvogel and P. Sannuti, Decentralized control with input saturation,, Proc. of the 2004 American Control Conference, (2004). Google Scholar

[39]

A. A. Stoorvogel, J. Minteer and C. Deliu, Decentralized control with input saturation: a first step towards design,, American Control Conference, (2005). Google Scholar

[40]

A. A. Stoorvogel, A. Saberi, C. Deliu and P. Sannuti, Decentralized stabilization of LTI systems subject to actuator saturation,, In, 346 (2007), 397. Google Scholar

[41]

S. Tarbouriech, C. Preiur and J. M. Gomes da Silva, Jr., Stability analysis and stabilization of systems presenting nested saturation,, IEEE Trans. on Autom. Control, 51 (2006), 1364. Google Scholar

[42]

F. Wu and B. Lu, Anti windup control design for exponentially unstable LTI systems with actuator saturation,, System and Control Letters, 52 (2004), 304. doi: 10.1016/j.sysconle.2004.02.007. Google Scholar

[43]

F. Wu, Z. Lin and Q. Zheng, Output feedback stabilization of linear systems with actuator saturation,, IEEE Trans. Autom. Control, 52 (1997), 122. doi: 10.1109/TAC.2006.886498. Google Scholar

[44]

G. Valmorbida, S. Tarbouriech and G. Garcia, State feedback design for input-saturating quadratic systems,, Automatica, 46 (2010), 1196. doi: 10.1016/j.automatica.2010.03.016. Google Scholar

[45]

G. Zhai, M. Ikeda and Y. Fujikasi, Decentralized H-infinity Controller design: a matrix inequality approach using a homotopy method,, Automatica, 37 (2001), 565. doi: 10.1016/S0005-1098(00)00190-4. Google Scholar

show all references

References:
[1]

A. Bateman and Z. Lin, An analysis and design method for linear systems under nested saturation,, System Control Letters, 8 (2003), 41. doi: 10.1016/S0167-6911(02)00246-3. Google Scholar

[2]

D. S. Bernstein, A chronological bibliography on saturating actuators,, Int. J. Robust and Nonlinear Control, 5 (1995), 375. doi: 10.1002/rnc.4590050502. Google Scholar

[3]

D. S. Bernstein and A. N. Michel, Special issue on saturating actuators,, Int. J. Robust and Nonlinear Control, 5 (1995), 375. Google Scholar

[4]

D. S. Bernstein and A. N. Michel, A chronological bibliography on saturating actuators,, Int. J. Robust Nonlinear Control, 5 (1995), 75. doi: 10.1002/rnc.4590050502. Google Scholar

[5]

Y. Cao, Z. Lin and D. G. Ward, An anti windup approach to enlarging domain o attraction for linear systems subject to actuator saturation and disturbance,, IEEE Trans on Automatic Control, 47 (2002), 140. doi: 10.1109/9.981734. Google Scholar

[6]

D. Dai, T. Hu, A. R. Teel and L. Zaccarian, Case Studies on the control input constrained linear plants via output feedback containing an internal dead zone loop,, In, (2007), 313. doi: 10.1007/978-3-540-37010-9_11. Google Scholar

[7]

D. Dai, T. Hu, A. R. Teel and L. Zaccarian, Control of saturated linear plants via output feedback containing an internal dead zone loop,, Proc. 2006 ACC, (2006), 5239. Google Scholar

[8]

D. Dai, T. Hu, A. R. Teel and L. Zaccarian, Output feedback design for saturated linear plants using dead zone loops,, Automatica, 45 (2009), 2917. doi: 10.1016/j.automatica.2009.09.022. Google Scholar

[9]

D. Dai, T. Hu, A. R. Teel and L. Zaccarian, Piecewise-quadratic Lyapunov functions for systems with dead zones or saturations,, System and Control Letters, 58 (2009), 365. doi: 10.1016/j.sysconle.2009.01.003. Google Scholar

[10]

C. Deliu, B. Malek, S. Roy, A. Saberi and A. A. Stoorvogel, Decentralized control of discrete-time linear time invariant systems with input saturation,, Int. J. Robust and Nonlinear Control, 20 (2010), 1353. Google Scholar

[11]

H. Fang, Z. Lin and T. Hu, Analysis of linear systems in the presence of Actuator saturation and L2-disturbances,, Automatica, 40 (2004), 1229. doi: 10.1016/j.automatica.2004.02.009. Google Scholar

[12]

H. Fang and L. Lin, Stability analysis for linear systems under state constraints, IEEE Trans. Autom. Control, 49 (2004), 950. doi: 10.1109/TAC.2004.829614. Google Scholar

[13]

J. M. Gomes da Silva, Jr. and S. Tarboureich, Anti-windup design with guaranteed regions of stability: an LMI based approach,, IEEE Trans. Autom. Control, 50 (2005), 106. doi: 10.1109/TAC.2004.841128. Google Scholar

[14]

G. Grimm, J. Hatfield, I. Postlethwaite, A. R. Teel, M. C. Turner and L. Zaccarian, Anti windup for stable linear systems with input saturation: an LMI based synthesis,, IEEE Trans Automatic Control, 48 (2003), 1509. doi: 10.1109/TAC.2003.816965. Google Scholar

[15]

W. Guan and G. H. Yang, Analysis and design of output feedback control systems in the presence of actuator saturation,, American Control Conference, (2009). Google Scholar

[16]

W. Guan and G. H. Yang, New controller design method for continuous-time systems with state saturation,, IET Control Theory Appl., 4 (2010), 1889. doi: 10.1049/iet-cta.2009.0433. Google Scholar

[17]

J. M. Gomes da Silva Jr., S. Tarbouriech and R. Reginatto, Analysis of regions of stability of for linear systems with saturating inputs through an anti-windup scheme,, Proc. IEEE Conf. Control Applications, (2002), 1106. Google Scholar

[18]

H. F. Grip, A. Saberi and X. Wang, Stabilization of multiple-input multiple-output linear systems with saturated outputs,, IEEE Trans. on Autom. Control, 55 (2010), 2160. Google Scholar

[19]

L. Hou and A. N. Michel, Asymptotic stability of systems with saturation constraints,, Proc. 35th IEEE Conf. on Decision Control, (1996), 2624. Google Scholar

[20]

T. Hu, Z. Lin and B. M. Chen, An analysis and deign method for linear systems subject to actuator saturation and disturbance,, Automatica, 38 (2002), 351. doi: 10.1016/S0005-1098(01)00209-6. Google Scholar

[21]

T. Hu and Z. Lin, "Control Systems with Actuator Saturation: Analysis and Design,", Birkhauser-Boston, (2001). doi: 10.1007/978-1-4612-0205-9. Google Scholar

[22]

T. Hu, A. R. Teel and L. Zaccarian, Anti-windup synthesis for linear control systems with input saturation: achieving regional, nonlinear performance,, Automatica, 44 (2008), 512. doi: 10.1016/j.automatica.2007.06.003. Google Scholar

[23]

T. Hu, A. R. Teel and L. Zaccarian, An analysis and design method for linear systems subject to actuator saturation and disturbances,, Automatica, 38 (2002), 351. doi: 10.1016/S0005-1098(01)00209-6. Google Scholar

[24]

T. Hu, A. R. Teel and L. Zaccarian, Stability and performance for saturated systems via quadratic and non-quadratic Lyapunov functions,, IEEE Trans. Autom. Control, 51 (2006), 2017. doi: 10.1109/TAC.2006.884942. Google Scholar

[25]

V. Kapilla and K. Grigoriadis, "Actuator Saturation Control,", Marcel Dekker, (2002). doi: 10.1201/9780203910818. Google Scholar

[26]

G. Kreisselmeier, Stabilization of linear systems in the presence of output measurement saturation, System Control Letters, 29 (1996), 27. doi: 10.1016/0167-6911(96)00048-5. Google Scholar

[27]

Z. Li, A. Saberi and A. A. Stoorvogel, Semiglobal stabilization of linear discrete-time systems subject to input saturation via linear feedback-an ARE based approach,, IEEE Trans. on Autom. Control, 41 (1996), 1203. Google Scholar

[28]

Z. Lin, "Low Gain Feedback,", Springer-Verlag, (1998). Google Scholar

[29]

Z. Lin and T. Hu, Semi-global Stabilization of linear systems subject to output saturation,, System Control Letters, 43 (2001), 211. doi: 10.1016/S0167-6911(01)00099-8. Google Scholar

[30]

D. Liu and A. N. Michel, "Dynamical Systems with Saturation Nonlinearities,", London, (1994). doi: 10.1007/BFb0032146. Google Scholar

[31]

L. Lu, Z. Lin and A. Bateman, Decentralized state feedback design for large-scale linear systems subject to input saturation,, IET Control Theory Appl., 4 (2010), 206. doi: 10.1049/iet-cta.2008.0605. Google Scholar

[32]

L. Lu, Z. Lin and A. Bateman, Decentralized Control design for large scale linear systems in the presence of multi-layer Nested Saturation,, Proc. IEEE Intl. Symp. on Intelligent Control-IEEE Multi-conference on Systems and Control, (2009). Google Scholar

[33]

M. S. Mahmoud, "Decentralized Control and Filtering in Interconnected Dynamical Systems,", CRC Press, (2010). doi: 10.1201/b10349. Google Scholar

[34]

C. Pittet, S. Tarbourhiech and C. Burgat, Output feedback synthesis via the circle criterion for linear systems subject to saturating inputs,, Proc. the 37th Conference on Decision and Control, (1998). Google Scholar

[35]

I. Postlethwaite, M. Turner and G. Herrmann, Robust control applications,, Annual Reviews in Control, 31 (2007), 27. doi: 10.1016/j.arcontrol.2007.02.003. Google Scholar

[36]

A. Saberi, Z. Lin and A. R. Teel, Control of linear systems with saturating actuators,, IEEE Trans. Automat. Contr., 41 (1996), 368. doi: 10.1109/9.486638. Google Scholar

[37]

A. Saberi and A. A. Stoorvogel, Special issue on control problems with constraints,, Int. Journal of Robust and Nonlinear Control, 9 (1999), 583. Google Scholar

[38]

A. Saberi, A. A. Stoorvogel and P. Sannuti, Decentralized control with input saturation,, Proc. of the 2004 American Control Conference, (2004). Google Scholar

[39]

A. A. Stoorvogel, J. Minteer and C. Deliu, Decentralized control with input saturation: a first step towards design,, American Control Conference, (2005). Google Scholar

[40]

A. A. Stoorvogel, A. Saberi, C. Deliu and P. Sannuti, Decentralized stabilization of LTI systems subject to actuator saturation,, In, 346 (2007), 397. Google Scholar

[41]

S. Tarbouriech, C. Preiur and J. M. Gomes da Silva, Jr., Stability analysis and stabilization of systems presenting nested saturation,, IEEE Trans. on Autom. Control, 51 (2006), 1364. Google Scholar

[42]

F. Wu and B. Lu, Anti windup control design for exponentially unstable LTI systems with actuator saturation,, System and Control Letters, 52 (2004), 304. doi: 10.1016/j.sysconle.2004.02.007. Google Scholar

[43]

F. Wu, Z. Lin and Q. Zheng, Output feedback stabilization of linear systems with actuator saturation,, IEEE Trans. Autom. Control, 52 (1997), 122. doi: 10.1109/TAC.2006.886498. Google Scholar

[44]

G. Valmorbida, S. Tarbouriech and G. Garcia, State feedback design for input-saturating quadratic systems,, Automatica, 46 (2010), 1196. doi: 10.1016/j.automatica.2010.03.016. Google Scholar

[45]

G. Zhai, M. Ikeda and Y. Fujikasi, Decentralized H-infinity Controller design: a matrix inequality approach using a homotopy method,, Automatica, 37 (2001), 565. doi: 10.1016/S0005-1098(00)00190-4. Google Scholar

[1]

Magdi S. Mahmoud. Output feedback overlapping control design of interconnected systems with input saturation. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 127-151. doi: 10.3934/naco.2016004

[2]

Christopher M. Kribs-Zaleta. Sharpness of saturation in harvesting and predation. Mathematical Biosciences & Engineering, 2009, 6 (4) : 719-742. doi: 10.3934/mbe.2009.6.719

[3]

Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121

[4]

Cuicui Jiang, Kaifa Wang, Lijuan Song. Global dynamics of a delay virus model with recruitment and saturation effects of immune responses. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1233-1246. doi: 10.3934/mbe.2017063

[5]

Kazuhiro Kurata, Kotaro Morimoto. Existence of multiple spike stationary patterns in a chemotaxis model with weak saturation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 139-164. doi: 10.3934/dcds.2011.31.139

[6]

Muhammad Altaf Khan, Muhammad Farhan, Saeed Islam, Ebenezer Bonyah. Modeling the transmission dynamics of avian influenza with saturation and psychological effect. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 455-474. doi: 10.3934/dcdss.2019030

[7]

Bernard Bonnard, Olivier Cots, Jérémy Rouot, Thibaut Verron. Time minimal saturation of a pair of spins and application in Magnetic Resonance Imaging. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019029

[8]

James P. Nelson, Mark J. Balas. Direct model reference adaptive control of linear systems with input/output delays. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 445-462. doi: 10.3934/naco.2013.3.445

[9]

Kazuhiro Kurata, Kotaro Morimoto. Construction and asymptotic behavior of multi-peak solutions to the Gierer-Meinhardt system with saturation. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1443-1482. doi: 10.3934/cpaa.2008.7.1443

[10]

Dan Li, Chunlai Mu, Pan Zheng, Ke Lin. Boundedness in a three-dimensional Keller-Segel-Stokes system involving tensor-valued sensitivity with saturation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 831-849. doi: 10.3934/dcdsb.2018209

[11]

Youshan Tao, Michael Winkler. A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2047-2067. doi: 10.3934/cpaa.2019092

[12]

Quoc T. Luu, Paul DuChateau. The relative biologic effectiveness versus linear energy transfer curve as an output-input relation for linear cellular systems. Mathematical Biosciences & Engineering, 2009, 6 (3) : 591-602. doi: 10.3934/mbe.2009.6.591

[13]

Diego Napp, Carmen Perea, Raquel Pinto. Input-state-output representations and constructions of finite support 2D convolutional codes. Advances in Mathematics of Communications, 2010, 4 (4) : 533-545. doi: 10.3934/amc.2010.4.533

[14]

Bogdan Sasu, A. L. Sasu. Input-output conditions for the asymptotic behavior of linear skew-product flows and applications. Communications on Pure & Applied Analysis, 2006, 5 (3) : 551-569. doi: 10.3934/cpaa.2006.5.551

[15]

Andrii Mironchenko, Hiroshi Ito. Characterizations of integral input-to-state stability for bilinear systems in infinite dimensions. Mathematical Control & Related Fields, 2016, 6 (3) : 447-466. doi: 10.3934/mcrf.2016011

[16]

Harry L. Johnson, David Russell. Transfer function approach to output specification in certain linear distributed parameter systems. Conference Publications, 2003, 2003 (Special) : 449-458. doi: 10.3934/proc.2003.2003.449

[17]

Xiu-Fang Liu, Gen-Qi Xu. Exponential stabilization of Timoshenko beam with input and output delays. Mathematical Control & Related Fields, 2016, 6 (2) : 271-292. doi: 10.3934/mcrf.2016004

[18]

Andrey Olypher, Jean Vaillant. On the properties of input-to-output transformations in neuronal networks. Mathematical Biosciences & Engineering, 2016, 13 (3) : 579-596. doi: 10.3934/mbe.2016009

[19]

Huijuan Li, Junxia Wang. Input-to-state stability of continuous-time systems via finite-time Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019192

[20]

Alexei Pokrovskii, Dmitrii Rachinskii. Effect of positive feedback on Devil's staircase input-output relationship. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1095-1112. doi: 10.3934/dcdss.2013.6.1095

 Impact Factor: 

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]