December  2012, 32(12): 4445-4466. doi: 10.3934/dcds.2012.32.4445

Free path of billiards with flat points

1. 

Department of Mathematics and Statistics, University of Massachusetts, Amherst MA 01003

Received  March 2011 Revised  May 2012 Published  August 2012

In this paper we study a special family of Lorentz gas with infinite horizon. The periodic scatterers have $C^3$ smooth boundary with positive curvature except on finitely many flat points. In addition there exists a trajectory with infinite free path and tangentially touching the scatterers only at some flat points. The singularity set of the system is analyzed in detail. And we prove that the free path is piecewise Hölder continuous with uniform Hölder constant. In addition these systems are shown to be non-uniformly hyperbolic; local stable and unstable manifolds exist on a set of full Lebesgue measure; and the stable and unstable holonomy maps are absolutely continuous.
Citation: Hong-Kun Zhang. Free path of billiards with flat points. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4445-4466. doi: 10.3934/dcds.2012.32.4445
References:
[1]

L. A. Bunimovich, Ya. G. Sinai and N. I. Chernov, Markovpartitions for two-dimensional hyperbolic billiards,, Russian Math. Surveys, 45 (1990), 105.  doi: 10.1070/RM1990v045n03ABEH002355.  Google Scholar

[2]

L. A. Bunimovich, Ya. G. Sinai and N. I. Chernov, Statistical properties of two-dimensional hyperbolic billiards,, Russian Math. Surveys, 46 (1991), 47.  doi: 10.1070/RM1991v046n04ABEH002827.  Google Scholar

[3]

N. Chernov, Statistical properties of theperiodic Lorentz gas in Multidimensional case,, J. Stat. Physics, 74 (1994), 11.  doi: 10.1007/BF02186805.  Google Scholar

[4]

N. Chernov and C. Haskell, Nonuniformlyhyperbolic K-systems are Bernoulli,, Ergod. Th. Dynam. Sys., 16 (1996), 19.   Google Scholar

[5]

N. Chernov, Decay of correlations in dispersing billiards,, J. Statist. Phys., 94 (1999), 513.  doi: 10.1023/A:1004581304939.  Google Scholar

[6]

N. Chernov and D. Dolgopyat, Anomalous current in periodic Lorentz gases with infinite horizon,, Uspekhi Mat. Nauk, 64 (2009), 73.   Google Scholar

[7]

N. Chernov and R. Markarian, "Chaotic Billiards,", Mathematical Surveys and Monographs, 127 (2006).   Google Scholar

[8]

N. Chernov and L.-S. Young, Decay of correlations for Lorentz gases and hard balls,, in: Hard Ball Systems and the Lorentz Gas, 101 (2000), 89.   Google Scholar

[9]

N. Chernov and H.-K. Zhang, Billiards with polynomial mixingrates,, Nonlineartity, 4 (2005), 1527.  doi: 10.1088/0951-7715/18/4/006.  Google Scholar

[10]

N. Chernov and H.-K. Zhang, A family of chaotic billiards withvariable mixing rates,, Stochastics and Dynamics, 5 (2005), 535.  doi: 10.1142/S0219493705001572.  Google Scholar

[11]

N. Chernov and H.-K. Zhang, Improved estimates for correlations in billiards,, Communications in Mathematical Physics, 277 (2008), 305.  doi: 10.1007/s00220-007-0360-x.  Google Scholar

[12]

D. Dolgopyat, D. Szász and T. Varjú, Recurrence properties of planar Lorentz process,, Duke Math. J., 142 (2008), 241.  doi: 10.1215/00127094-2008-006.  Google Scholar

[13]

G. Gallavotti and D. Ornstein, Billiards and Bernoulli scheme,, Commun. Math. Phys. 38 (1974), 38 (1974), 83.  doi: 10.1007/BF01651505.  Google Scholar

[14]

A. Katok and J.-M. Strelcyn, "Invariant Manifolds, Entropy and Billiards; Smooth Mapswith Singularities,", Lect. Notes. in Math. 1222, (1222).   Google Scholar

[15]

H. Lorentz, The motion of electrons in metallic bodies,, Proc. Amst. Acad., 7 (1905), 438.   Google Scholar

[16]

R. Markarian, Billiards with polynomial decayof correlations,, Er. Th. Dynam. Syst., 24 (2004), 177.  doi: 10.1017/S0143385703000270.  Google Scholar

[17]

D. Ornstein and B. Weiss, On the Bernoulli natureof systems with some hyperbolic structure,, Ergod. Th. Dynam. Sys., 18 (1998), 441.  doi: 10.1017/S0143385798100354.  Google Scholar

[18]

Ya. B. Pensin, Dynamical Systems With Generalized Hyperbolic Attractors: Hyperbolic, Ergodic and Topological Properties,, Ergod. Theory and Dyn. Syst., 12 (1992), 123.   Google Scholar

[19]

Ya. G. Sinai, Dynamical systems with elastic reflections.Ergodic properties of diepersing billiards,, Russian Math. Surveys, 25 (1970), 137.  doi: 10.1070/RM1970v025n02ABEH003794.  Google Scholar

[20]

Ya. G. Sinai and N. Chernov, Ergodicproperties of some systems of two-dimensional discs andthree-dimensional spheres,, Russian Math. Surveys, 42 (1987), 181.  doi: 10.1070/RM1987v042n03ABEH001421.  Google Scholar

[21]

M. Wojtkowski, Invariant families of cones and Lyapunov exponents,, Ergod. Th. Dynam. Syst., 5 (1985), 145.  doi: 10.1017/S0143385700002807.  Google Scholar

[22]

L.-S. Young, Statistical properties of systemswith some hyperbolicity including certain billiards,, Ann. Math., 147 (1998), 585.  doi: 10.2307/120960.  Google Scholar

show all references

References:
[1]

L. A. Bunimovich, Ya. G. Sinai and N. I. Chernov, Markovpartitions for two-dimensional hyperbolic billiards,, Russian Math. Surveys, 45 (1990), 105.  doi: 10.1070/RM1990v045n03ABEH002355.  Google Scholar

[2]

L. A. Bunimovich, Ya. G. Sinai and N. I. Chernov, Statistical properties of two-dimensional hyperbolic billiards,, Russian Math. Surveys, 46 (1991), 47.  doi: 10.1070/RM1991v046n04ABEH002827.  Google Scholar

[3]

N. Chernov, Statistical properties of theperiodic Lorentz gas in Multidimensional case,, J. Stat. Physics, 74 (1994), 11.  doi: 10.1007/BF02186805.  Google Scholar

[4]

N. Chernov and C. Haskell, Nonuniformlyhyperbolic K-systems are Bernoulli,, Ergod. Th. Dynam. Sys., 16 (1996), 19.   Google Scholar

[5]

N. Chernov, Decay of correlations in dispersing billiards,, J. Statist. Phys., 94 (1999), 513.  doi: 10.1023/A:1004581304939.  Google Scholar

[6]

N. Chernov and D. Dolgopyat, Anomalous current in periodic Lorentz gases with infinite horizon,, Uspekhi Mat. Nauk, 64 (2009), 73.   Google Scholar

[7]

N. Chernov and R. Markarian, "Chaotic Billiards,", Mathematical Surveys and Monographs, 127 (2006).   Google Scholar

[8]

N. Chernov and L.-S. Young, Decay of correlations for Lorentz gases and hard balls,, in: Hard Ball Systems and the Lorentz Gas, 101 (2000), 89.   Google Scholar

[9]

N. Chernov and H.-K. Zhang, Billiards with polynomial mixingrates,, Nonlineartity, 4 (2005), 1527.  doi: 10.1088/0951-7715/18/4/006.  Google Scholar

[10]

N. Chernov and H.-K. Zhang, A family of chaotic billiards withvariable mixing rates,, Stochastics and Dynamics, 5 (2005), 535.  doi: 10.1142/S0219493705001572.  Google Scholar

[11]

N. Chernov and H.-K. Zhang, Improved estimates for correlations in billiards,, Communications in Mathematical Physics, 277 (2008), 305.  doi: 10.1007/s00220-007-0360-x.  Google Scholar

[12]

D. Dolgopyat, D. Szász and T. Varjú, Recurrence properties of planar Lorentz process,, Duke Math. J., 142 (2008), 241.  doi: 10.1215/00127094-2008-006.  Google Scholar

[13]

G. Gallavotti and D. Ornstein, Billiards and Bernoulli scheme,, Commun. Math. Phys. 38 (1974), 38 (1974), 83.  doi: 10.1007/BF01651505.  Google Scholar

[14]

A. Katok and J.-M. Strelcyn, "Invariant Manifolds, Entropy and Billiards; Smooth Mapswith Singularities,", Lect. Notes. in Math. 1222, (1222).   Google Scholar

[15]

H. Lorentz, The motion of electrons in metallic bodies,, Proc. Amst. Acad., 7 (1905), 438.   Google Scholar

[16]

R. Markarian, Billiards with polynomial decayof correlations,, Er. Th. Dynam. Syst., 24 (2004), 177.  doi: 10.1017/S0143385703000270.  Google Scholar

[17]

D. Ornstein and B. Weiss, On the Bernoulli natureof systems with some hyperbolic structure,, Ergod. Th. Dynam. Sys., 18 (1998), 441.  doi: 10.1017/S0143385798100354.  Google Scholar

[18]

Ya. B. Pensin, Dynamical Systems With Generalized Hyperbolic Attractors: Hyperbolic, Ergodic and Topological Properties,, Ergod. Theory and Dyn. Syst., 12 (1992), 123.   Google Scholar

[19]

Ya. G. Sinai, Dynamical systems with elastic reflections.Ergodic properties of diepersing billiards,, Russian Math. Surveys, 25 (1970), 137.  doi: 10.1070/RM1970v025n02ABEH003794.  Google Scholar

[20]

Ya. G. Sinai and N. Chernov, Ergodicproperties of some systems of two-dimensional discs andthree-dimensional spheres,, Russian Math. Surveys, 42 (1987), 181.  doi: 10.1070/RM1987v042n03ABEH001421.  Google Scholar

[21]

M. Wojtkowski, Invariant families of cones and Lyapunov exponents,, Ergod. Th. Dynam. Syst., 5 (1985), 145.  doi: 10.1017/S0143385700002807.  Google Scholar

[22]

L.-S. Young, Statistical properties of systemswith some hyperbolicity including certain billiards,, Ann. Math., 147 (1998), 585.  doi: 10.2307/120960.  Google Scholar

[1]

Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001

[2]

Simon Castle, Norbert Peyerimhoff, Karl Friedrich Siburg. Billiards in ideal hyperbolic polygons. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 893-908. doi: 10.3934/dcds.2011.29.893

[3]

Kathryn Lindsey, Rodrigo Treviño. Infinite type flat surface models of ergodic systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5509-5553. doi: 10.3934/dcds.2016043

[4]

Zheng Yin, Ercai Chen. Conditional variational principle for the irregular set in some nonuniformly hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6581-6597. doi: 10.3934/dcds.2016085

[5]

Luis Barreira, Claudia Valls. Existence of stable manifolds for nonuniformly hyperbolic $c^1$ dynamics. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 307-327. doi: 10.3934/dcds.2006.16.307

[6]

Senda Ounaies, Jean-Marc Bonnisseau, Souhail Chebbi, Halil Mete Soner. Merton problem in an infinite horizon and a discrete time with frictions. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1323-1331. doi: 10.3934/jimo.2016.12.1323

[7]

Tao Pang, Azmat Hussain. An infinite time horizon portfolio optimization model with delays. Mathematical Control & Related Fields, 2016, 6 (4) : 629-651. doi: 10.3934/mcrf.2016018

[8]

Yves Achdou, Manh-Khang Dao, Olivier Ley, Nicoletta Tchou. A class of infinite horizon mean field games on networks. Networks & Heterogeneous Media, 2019, 14 (3) : 537-566. doi: 10.3934/nhm.2019021

[9]

Fumioki Asakura, Andrea Corli. The path decomposition technique for systems of hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 15-32. doi: 10.3934/dcdss.2016.9.15

[10]

Pedro Duarte, José Pedro GaivÃo, Mohammad Soufi. Hyperbolic billiards on polytopes with contracting reflection laws. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3079-3109. doi: 10.3934/dcds.2017132

[11]

Misha Bialy. Hopf rigidity for convex billiards on the hemisphere and hyperbolic plane. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3903-3913. doi: 10.3934/dcds.2013.33.3903

[12]

Liming Sun, Li-Zhi Liao. An interior point continuous path-following trajectory for linear programming. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1517-1534. doi: 10.3934/jimo.2018107

[13]

Andrew E.B. Lim, John B. Moore. A path following algorithm for infinite quadratic programming on a Hilbert space. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 653-670. doi: 10.3934/dcds.1998.4.653

[14]

Anatole Katok, Federico Rodriguez Hertz. Measure and cocycle rigidity for certain nonuniformly hyperbolic actions of higher-rank abelian groups. Journal of Modern Dynamics, 2010, 4 (3) : 487-515. doi: 10.3934/jmd.2010.4.487

[15]

Fabio Bagagiolo. An infinite horizon optimal control problem for some switching systems. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 443-462. doi: 10.3934/dcdsb.2001.1.443

[16]

Renato Iturriaga, Héctor Sánchez-Morgado. Limit of the infinite horizon discounted Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 623-635. doi: 10.3934/dcdsb.2011.15.623

[17]

Nobusumi Sagara. Recursive variational problems in nonreflexive Banach spaces with an infinite horizon: An existence result. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1219-1232. doi: 10.3934/dcdss.2018069

[18]

Monika Dryl, Delfim F. M. Torres. Necessary optimality conditions for infinite horizon variational problems on time scales. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 145-160. doi: 10.3934/naco.2013.3.145

[19]

Naïla Hayek. Infinite-horizon multiobjective optimal control problems for bounded processes. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1121-1141. doi: 10.3934/dcdss.2018064

[20]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control & Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]