- Previous Article
- MBE Home
- This Issue
-
Next Article
A Cellular Potts model simulating cell migration on and in matrix environments
On a mathematical model of tumor growth based on cancer stem cells
1. | Departamento de Matemática Aplicada, EUI Informática, Universidad Politécnica de Madrid, 28031 Madrid, Spain |
References:
[1] |
Cell, 124 (2006), 1111-1115. Google Scholar |
[2] |
Cancer Res, 65 (2005), 10946-10951. Google Scholar |
[3] |
Blood, 112 (2008), 4793-4807. Google Scholar |
[4] |
Tutorials in mathematical biosciences. III, 223-246, Lecture Notes in Math., 1872, Springer, Berlin, 2006. |
[5] |
J. Math. Biol., 47 (2003), 391-423.
doi: 10.1007/s00285-003-0199-5. |
[6] |
Proceedings of the CS2Bio 2nd International Workshop on Interactions between Computer Science and Biology, 2011. Google Scholar |
[7] |
PLoS ONE, 7 (2012), e26233. Google Scholar |
[8] |
Journal of Theoretical Biology, 250 (2008), 606-620. Google Scholar |
[9] |
Willey Edt. New Jersey, 2009. Google Scholar |
[10] |
Mathematical Models and Methods in Applied Sciences, 19 (2009), 257-281. |
[11] |
Discrete and Continuous Dynamical Systems - Serie A., 25 (2009), 343-361. |
[12] |
in "Modern Mathematical Tools and Techniques in Capturing Complexity Series: Understanding Complex Systems" (Eds. L. Pardo, N. Balakrishnan and M. A. Gil), Springer 2011. Google Scholar |
show all references
References:
[1] |
Cell, 124 (2006), 1111-1115. Google Scholar |
[2] |
Cancer Res, 65 (2005), 10946-10951. Google Scholar |
[3] |
Blood, 112 (2008), 4793-4807. Google Scholar |
[4] |
Tutorials in mathematical biosciences. III, 223-246, Lecture Notes in Math., 1872, Springer, Berlin, 2006. |
[5] |
J. Math. Biol., 47 (2003), 391-423.
doi: 10.1007/s00285-003-0199-5. |
[6] |
Proceedings of the CS2Bio 2nd International Workshop on Interactions between Computer Science and Biology, 2011. Google Scholar |
[7] |
PLoS ONE, 7 (2012), e26233. Google Scholar |
[8] |
Journal of Theoretical Biology, 250 (2008), 606-620. Google Scholar |
[9] |
Willey Edt. New Jersey, 2009. Google Scholar |
[10] |
Mathematical Models and Methods in Applied Sciences, 19 (2009), 257-281. |
[11] |
Discrete and Continuous Dynamical Systems - Serie A., 25 (2009), 343-361. |
[12] |
in "Modern Mathematical Tools and Techniques in Capturing Complexity Series: Understanding Complex Systems" (Eds. L. Pardo, N. Balakrishnan and M. A. Gil), Springer 2011. Google Scholar |
[1] |
Avner Friedman, Xiulan Lai. Free boundary problems associated with cancer treatment by combination therapy. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 6825-6842. doi: 10.3934/dcds.2019233 |
[2] |
Yang Zhang. A free boundary problem of the cancer invasion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021092 |
[3] |
Chengjun Guo, Chengxian Guo, Sameed Ahmed, Xinfeng Liu. Moment stability for nonlinear stochastic growth kinetics of breast cancer stem cells with time-delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2473-2489. doi: 10.3934/dcdsb.2016056 |
[4] |
Avner Friedman. Free boundary problems arising in biology. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 193-202. doi: 10.3934/dcdsb.2018013 |
[5] |
Avner Friedman. Free boundary problems for systems of Stokes equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1455-1468. doi: 10.3934/dcdsb.2016006 |
[6] |
Serena Dipierro, Enrico Valdinoci. (Non)local and (non)linear free boundary problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 465-476. doi: 10.3934/dcdss.2018025 |
[7] |
Noriaki Yamazaki. Almost periodicity of solutions to free boundary problems. Conference Publications, 2001, 2001 (Special) : 386-397. doi: 10.3934/proc.2001.2001.386 |
[8] |
Manuel Delgado, Ítalo Bruno Mendes Duarte, Antonio Suárez Fernández. Nonlocal elliptic system arising from the growth of cancer stem cells. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1767-1795. doi: 10.3934/dcdsb.2018083 |
[9] |
Evans K. Afenya, Calixto P. Calderón. Growth kinetics of cancer cells prior to detection and treatment: An alternative view. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 25-28. doi: 10.3934/dcdsb.2004.4.25 |
[10] |
Svetlana Bunimovich-Mendrazitsky, Yakov Goltser. Use of quasi-normal form to examine stability of tumor-free equilibrium in a mathematical model of bcg treatment of bladder cancer. Mathematical Biosciences & Engineering, 2011, 8 (2) : 529-547. doi: 10.3934/mbe.2011.8.529 |
[11] |
Yaodan Huang, Zhengce Zhang, Bei Hu. Bifurcation from stability to instability for a free boundary tumor model with angiogenesis. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2473-2510. doi: 10.3934/dcds.2019105 |
[12] |
Ugur G. Abdulla, Evan Cosgrove, Jonathan Goldfarb. On the Frechet differentiability in optimal control of coefficients in parabolic free boundary problems. Evolution Equations & Control Theory, 2017, 6 (3) : 319-344. doi: 10.3934/eect.2017017 |
[13] |
Daniela De Silva, Fausto Ferrari, Sandro Salsa. On two phase free boundary problems governed by elliptic equations with distributed sources. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 673-693. doi: 10.3934/dcdss.2014.7.673 |
[14] |
Daniela De Silva, Fausto Ferrari, Sandro Salsa. Recent progresses on elliptic two-phase free boundary problems. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 6961-6978. doi: 10.3934/dcds.2019239 |
[15] |
Huiqiang Jiang. Regularity of a vector valued two phase free boundary problems. Conference Publications, 2013, 2013 (special) : 365-374. doi: 10.3934/proc.2013.2013.365 |
[16] |
Mingxin Wang. Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 415-421. doi: 10.3934/dcdsb.2018179 |
[17] |
Jesús Ildefonso Díaz. On the free boundary for quenching type parabolic problems via local energy methods. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1799-1814. doi: 10.3934/cpaa.2014.13.1799 |
[18] |
Alexander S. Bratus, Svetlana Yu. Kovalenko, Elena Fimmel. On viable therapy strategy for a mathematical spatial cancer model describing the dynamics of malignant and healthy cells. Mathematical Biosciences & Engineering, 2015, 12 (1) : 163-183. doi: 10.3934/mbe.2015.12.163 |
[19] |
Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic & Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409 |
[20] |
Catherine Lebiedzik. Uniform stability in a vectorial full Von Kármán thermoelastic system with solenoidal dissipation and free boundary conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020092 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]