`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

The existence and stability of nontrivial steady states for S-K-T competition model with cross diffusion
Pages: 5271 - 5298, Issue 12, December 2014

doi:10.3934/dcds.2014.34.5271      Abstract        References        Full text (534.8K)           Related Articles

Wei-Ming Ni - Center for PDE, East China Normal University, Shanghai, 200241, China (email)
Yaping Wu - College of Mathematical Sciences, Capital Normal University, Beijing 100048, China (email)
Qian Xu - Department of Basic Courses, Beijing Union University, Beijing 100101, China (email)

1 Y. S. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 719-730.       
2 D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981.       
3 M. Iida, M. Mimura and H. Ninomiya, Diffusion, cross diffusion and competitive interaction, J. Math. Biol., 53 (2006), 617-641.       
4 H. Kuiper and L. Dung, Global attractors for cross diffusion systems on domains of arbitrary dimension, Rocky Mountain J. Math., 37 (2007), 1645-1668.       
5 Y. Kan-on, Stability of singularly perturbed solutions to nonlinear diffusion systems arising in population dynamics, Hiroshima Math. J., 23 (1993), 509-536.       
6 H. Kielhofer, Bifurcation Theory: An Introduction with Applications to PDEs, Applied Math. Sci. Vol. 156, Springer Verlag, New York Inc. 2004.       
7 K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J. Differential Equations, 58 (1985), 15-21.       
8 Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross diffusion, J. Differential Equations, 131 (1996), 79-131.       
9 Y. Lou and W. M. Ni, Diffusion vs cross diffusion: An elliptic approach, J. Differential Equations, 154 (1999), 157-190.       
10 Y. Lou, W. M. Ni and Y. Wu, On the global existence of a cross diffusion system, Discrete and Continuous Dynamical Systems, 4 (1998), 193-203.
11 Y. Lou, W. M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 435-458.
12 H. Matano and M. Mimura, Pattern formation in competition-diffusion systems in nonconvex domains, Publ. RIMS. Kyoto Univ., 19 (1983), 1049-1079.
13 M. Mimura, Stationary pattern of some density-dependent diffusion system with competitive dynamics, Hiroshima Math. J., 11 (1981), 621-635.       
14 M. Mimura, Y. Nishiura, A. Tesei and T. Tsujikawa, Coexistence problem for two competing species models with density-dependent diffusion, Hiroshima Math. J., 14 (1984), 425-449.       
15 W. M. Ni, Qualitative properties of solutions to elliptic problems, Stationary Partial Differential Equations, Hand. Differ. Equ., North-Holland, Amesterdam, 1 (2004), 157-233.       
16 N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theor. Biol., 79 (1979), 83-99.       
17 Y. Wu, Existence of stationary solutions with transition layers for a class of cross diffusion systems, Proc. of Royal Soc. Edinburg, Sect. A, 132 (2002), 1493-1511.       
18 Y. Wu, The instability of spiky steady states for a competing species model with cross diffusion, J. Differential Equations, 213 (2005), 289-340.       
19 Y. Wu and Q. Xu, The Existence and structure of large spiky steady states for S-K-T competition system with cross diffusion, Discrete Contin. Dyn. Syst., 29 (2011), 367-385.       
20 Y. Wu and Y. Zhao, The existence and stability of traveling waves with transition layers for the S-K-T competition model with cross diffusion, Science China, 53 (2010), 1161-1184.       
21 Y. Yamada, Positive solutions for Lotka-Volterra systems with cross diffusion, Stationary Partial Differential Equations, Hand. Differ. Equ., Elsevier, Amsterdam, VI (2008), 411-501.       
22 Y. Yamada, Global solutions for the Shigesada-Kawasaki-Teramoto model with cross diffusion, Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, 282-299, World Sci. Publ. Hackensack, NJ, (2009).       

Go to top