Mathematical Biosciences and Engineering (MBE)

A mathematical model studying mosquito-stage transmission-blocking vaccines
Pages: 1229 - 1245, Issue 5, October 2014

doi:10.3934/mbe.2014.11.1229      Abstract        References        Full text (811.7K)           Related Articles

Ruijun Zhao - Department of Mathematics and Statistics, Minnesota State University, Mankato, Mankaot, MN, 56001, United States (email)
Jemal Mohammed-Awel - Department of Mathematics and Computer Science, Valdosta State University, Valdosta, GA, 31698, United States (email)

1 F. B. Agusto, S. Y. D. Valle, K. W. Blayneh, C. N. Ngonghala, M. J. Goncalves, N. Li, R. Zhao and H. Gong, The impact of bed-net use on malaria prevalence, J. Theor. Biol., 320 (2013), 58-65.       
2 T. Antao and I. M. Hastings, Environmental, pharmacological and genetic influences on the spread of drug-resistant malaria, Proc. R. Soc. B., 278 (2011), 1705-1712.
3 J. L. Aron, Mathematical modeling of immunity to malaria, Math. Biosci., 90 (1988), 385-396.       
4 Y. Artzy-Randrup, D. Alonso and M. Pascual, Transmission intensity and drug resistance in malaria population dynamics: Implications for climate change, PLoS ONE, 5 (2010), e13588.
5 N. Chitnis and J. M. Hyman and J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bulletin of Mathematical Biology, 70 (2008), 1272-1296.       
6 N. Chitnis, A. Schapira, T. Smith and R. Steketee, Comparing the effectiveness of malaria vector-control interventions through a mathematical model, Am. J. Trop. Med. Hyg, 83 (2010), 230-240.
7 C. Chiyaka, J. M. Tchuenche, W. Garira and S. Dube, A mathematical analysis of the effects of control strategies on the transmission dynamics of malaria, Applied Mathematics and Computation, 195 (2008), 641-662.       
8 J. Dushoff, W. Huang and C. Castillo-Chavez, Backwards bifurcations and catastrophe in simple models of fatal diseases, J. Math. Bio., 36 (1998), 227-248.       
9 S. M. Garba, A. B. Gumel and M. R. A. Bakar, Backward bifurcations in dengue transmission dynamics, Math. Biosci., 205 (2008), 11-25.       
10 H. M. Giles and D. A. Warrell, Bruce-Chwatt's Essential Malariology, 3rd edition, Hodder Arnold, 1999.
11 S. A. Gourley, R. Liu and J. Wu, Slowing the evolution of insecticide resistance in mosquitoes: A mathematical model, Proc. R. Soc. A, 467 (2011), 2127-2148.       
12 I. M. Hastings, A model for the origins and spread of drug-resistant malaria, Parasitology, 115 (1997), 133-141.
13 I. M. Hastings and M. J. Mackinnon, The emergence of drug-resistant malaria, Parasitology, 117 (1998), 411-417.
14 I. Kawaguchi, A. Sasaki and M. Mogi, Combining zooprophylaxis and insecticide spraying: A malaria-control strategy limiting the development of insecticide resistance in vector mosquitoes, Proc. Biol. Sci., 271 (2004), 301-309.
15 E. Y. Klein, D. L. Smith, M. F. Boni and R. Laxminarayan, Clinically immune hosts as a refuge for drug-sensitive malaria parasites, Malaria Journal, 7 (2008), 67 pp.
16 J. Labadin, C. M. L. Kon and S. F. S. Juan, Deterministic malaria transmission model with acquired immunity, Proceedings of the World Congress on Engineering and Computer Science, 2009.
17 J. P. LaSalle, The Stability of Dynamical Systems, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1976.       
18 S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, A methodology for performing global uncertainly and sensitivity analysis in system biology, Journal of Theoretical Biology, 254 (2008), 178-196.       
19 G. Macdonald, The Epidemiology and Control of Malaria, Oxford University Press, London, 1957.
20 S. Mandal, R. R. Sarkar and S. Sinha, Mathematical models of malaria - a review, Malaria Journal, 10 (2011), 202 pp.
21 C. D. Mathers, A. D. Lopez and C. J. L. Murray, The burden of disease and mortality by condition: Data, methods, and results for 2001, in Global Burden of Disease and Risk Factors (eds. A. D. Lopez, C. D. Mathers, M. Ezzati, D. T. Jamison and C. J. L. Murray), Chapter 3, World Bank, Washington (DC), 2006.
22 P. J. McCall and D. W. Kelly, Learning and memory in disease vectors, Trends in Parasitology, 18 (2002), 429-433.
23 F. A. Milner and R. Zhao, A new mathematical model of syphilis, Math. Model. Nat. Phenom., 5 (2010), 96-108.       
24 V. Nussenzweig, M. F. Good and A. V. Hill, Mixed results for a malaria vaccine, Nature Medicine, 17 (2011), 1560-1561.
25 W. P. O'Meara, D. L. Smith and F. E. McKenzie, Potential impact of intermittent preventive treatment (IPT) on spread of drug resistant malaria, PLoS Med., 3 (2006), e141.
26 W. G. M. Programme, Malaria Elimination: A Field Manual for Low and Moderate Endemic Countries, Vol. 85, WHO, Geneva, 2007.
27 A. Ross, M. Penny, N. Maire, A. Studer, I. Carneiro, D. Schellenberg, B. Greenwood, M. Tanner and T. Smith, Modelling the epidemiological impact of intermittent preventive treatment against malaria in infants, PLoS One, 3 (2008), e2661.
28 S. R. Ross, Report on the Prevention of Malaria in Mauritius, Waterlow and Sons Limited, London, 1903.
29 T. RTS, First results of phase 3 trial of rts,s/as01 malaria vaccine in african children, The New England Journal of Medicine, 365 (2011), 1863-1875.
30 A. Saul, Mosquito stage, transmission blocking vaccines for malaria, Curr. Opin. Infect. Dis., 20 (2007), 476-481.
31 M. I. Teboh-Ewungkem, C. N. Podder and A. B. Gumel, Mathematical study of the role of gametocytes and an imperfect vaccine on malaria transmission dynamics, Bull. Math. Biol., 72 (2010), 63-93.       
32 O. J. T. Briƫt, T. A. Smith, N. Chitnis and M. Tanner, Uses of mosquito-stage transmission-blocking vaccines against plasmodium falciparum, Trends in Parasitology, 27 (2011), 190-196.
33 P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 18 (2002), 29-48.       
34 N. J. White, Preventing antimalarial drug resistance through combinations, Drug Resist. Updat., 1 (1998), 3-9.
35 N. J. White, A vaccine for malaria, The New England Journal of Medicine, 365 (2011), 1926-1927.
36 WHO, Global Strategic Framework for Integrated Vector Management, Vol. 85, WHO, Geneva, 2004.

Go to top