`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

Uniqueness and stability results for non-linear Johnson-Segalman viscoelasticity and related models
Pages: 2111 - 2132, Issue 7, September 2014

doi:10.3934/dcdsb.2014.19.2111      Abstract        References        Full text (427.5K)           Related Articles

Franca Franchi - Department of Mathematics, University of Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna, Italy (email)
Barbara Lazzari - Department of Mathematics, University of Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna, Italy (email)
Roberta Nibbi - Department of Mathematics, University of Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna, Italy (email)

1 R. B. Bird, R. C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, Vol 1. Fluid Mechanics, John Wiley & Sons, New York, 1987.
2 T. Bodnár and L. Pirkl, A Remark on the Deviatoric Decomposition of Oldroyd Type Models, Colloquium FLUID DYNAMICS 2011, Institute of Thermomechanics AS CR, v.v.i., Prague, October 19 - 21, 2011. Available from: http://www.it.cas.cz/en/colloqium-fluid-dynamics-2011
3 R. M. Christensen, Theory of Viscoelasticity, $2^{nd}$ edition, Dover Publications, New York, 2010.
4 C. I. Christov, Frame indifferent formulation of Maxwell's elastic-fluid model and the rational continuum mechanics of the electromagnetic field, Mech. Res. Comm., 38 (2011), 334-339.
5 M. Fabrizio, Dario graffi in a complex historical period, in Mathematicians in Bologna 1861-1960, (ed. S. Coen), Springer Basel AG, 2012, 179-195.
6 M. Fabrizio and F. Franchi, Delayed thermal models. Stability and thermodynamics, J. Thermal Stresses, 37 (2014), 160-173.
7 F. Franchi, On the behaviour of one-dimensional waves in thermo-viscoelastic fluids, Meccanica, 17 (1982), 3-10.
8 R. J. Gordon and W. R. Schowalter, Anisotropic fluid theory: A different approach to the dumbbell theory of dilute polymer solutions, Trans. Soc. Rheo., 16 (1972), 79-97.
9 D. Graffi, On a method for proving uniqueness theorems in mathematical physics, Atti. Sem. Mat. Fis. Univ. Modena, (Italian) [On a method to prove uniqueness theorems in mathematical physics], 37 (1989), 259-284.       
10 A. Guaily and M. Epstein, A unified hyperbolic model for viscoelastic liquids, Mech. Res. Comm., 37 (2010), 158-163.
11 T. Gültop, B. Alyavuz and M. Kopaç, Propagation of acceleration waves in the viscoelastic Johnson-Segalman fluids, Mech. Res. Comm., 37 (2010), 153-157.
12 S. J. Haward, Buckling instabilities in dilute polymer solution elastic strands, Rheol. Acta., 49 (2010), 1219-1225.
13 T. Hayat, A. Afsar and N. Ali, Peristaltic transport of a Johnson-Segalman fluid in an asymmetric channel, Math. Comput. Modelling, 47 (2008), 380-400.       
14 T. Hayat, S. Hina and A. A. Hendi, Slip effects on peristaltic transport of a Maxwell fluid with heat and mass transfer, J. Mech. Med. Biol., 12 (2012), [22 pages], 1250001.
15 S. Hinaa, T. Hayat and S. Asghard, Peristaltic transport of Johnson-Segalman fluid in a curved channel with compliant walls, Nonlinear Anal. Model. Control, 17 (2012), 297-311.       
16 D. Hu and T. Leliévre, New entropy estimates for the Oldroyd-B model and related models, Commun. Math. Sci., 5 (2007), 909-916.       
17 M. W. Johnson and D. Segalman, A model for viscoelastic fluid behavior which allows nonaffine deformation, J. Non-Newtionan Fluid Mech., 4 (1977), 255-270.
18 D. D. Joseph, M. Renardy and J. C. Saut, Hyperbolicity and change of type in the flow of viscoelastic fluids, Arch. Rat. Mech. Anal., 87 (1985), 213-251.       
19 R. W. Kolkka, D. S. Malkus, M. G. Hansen and G. R. Ierley, Spurt phenomena of the Johnson-Segalman fluid and related models, J. Non-Newtonian Fluid Mech., 29 (1988), 303-335.
20 H. V. J. Le Meur, Well-posedness of surface wave equations above a viscoelastic fluid, J. Math. Fluid Mech., 13 (2011), 481-514.       
21 V. Y. Liapidevskii, V. V. Pukhnachev and A. Tani, Nonlinear waves in incompressible viscoelastic Maxwell medium, Wave Motion, 48 (2011), 727-737.       
22 A. Morro, Evolution equations for non-simple viscoelastic solids, J. Elasticity, 105 (2011), 93-105.       
23 C. J. Pipe, N. J. Kim, P. A. Vasquez, L. P. Cook and G. H. McKinley, Wormlike micellar solutions: II. Comparison between experimental data and scission model predictions, Journal of Rheology, 54 (2010), 881-913.
24 L. E. Payne and B. Straughan, Convergence of the equations for a maxwell fluid, Stud. Appl. Math., 103 (1999), 267-278.
25 M. Renardy, Similarity solutions for jet breakup for various models of viscoelastic fluids, J. Non-Newtonian Fluid Mech., 104 (2002), 65-74.
26 M. Renardy, On control of shear flow of an upper convected Maxwell fluid, ZAMM Z. Angew. Math. Mech., 87 (2007), 213-218.       
27 C. E. Seyler and M. R. Martin, Relaxation model for extended magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-pinches, Phys. Plasmas, 18 (2011), [13 pages], 012703.
28 B. Straughan, The Energy Method, Stability and Nonlinear Convection, $2^{nd}$ edition, Springer-Verlag, New York, 2004.       
29 B. Straughan, Heat Waves, Applied Mathematical Sciences 177, Springer New York, 2011.       
30 D. Y. Tzou, Macro-to-Microscale Heat Transfer: The Lagging Behavior, Taylor and Francis, Washington, 1997.
31 L. Wilson, H. Zhou, W. Kang and H. Wang, Controllability of non-newtonian fluids under homogeneous extensional flow, Appl. Math. Sci., 2 (2008), 2145-2156.       

Go to top