`a`
Communications on Pure and Applied Analysis (CPAA)
 

Very weak solutions of singular porous medium equations with measure data
Pages: 23 - 49, Issue 1, January 2015

doi:10.3934/cpaa.2015.14.23      Abstract        References        Full text (523.0K)           Related Articles

Verena Bögelein - Department Mathematik, Universität Erlangen--Nürnberg, Cauerstr. 11, 91056 Erlangen, Germany (email)
Frank Duzaar - Department Mathematik, Universität Erlangen--Nürnberg, Cauerstr. 11, 91056 Erlangen, Germany (email)
Ugo Gianazza - Dipartimento di Matematica "F. Casorati”, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy (email)

1 H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z., 183 (1983), 311-341.       
2 L. Boccardo, Problemi differenziali ellittici e parabolici con dati misure, Boll. Un. Mat. Ital. A, 11 (1997), 439-461.
3 L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data, J. Funct. Anal., 147 (1997), 237-258.       
4 L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations, 17 (1992), 641-655.       
5 L. Boccardo, T. Gallouët and L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 539-551.       
6 V. Bögelein, F. Duzaar and U. Gianazza, Porous medium type equations with measure data and potential estimates, SIAM J. Math. Anal., 45 (2013), 3283-3330.       
7 V. Bögelein, F. Duzaar and U. Gianazza, Sharp boundedness and continuity results for the singular porous medium equation, (2014), preprint available from: https://www.mittag-leffler.se/preprints/files/IML-1314f-31.pdf.
8 V. Bögelein, F. Duzaar and P. Marcellini, Parabolic systems with $p,q$-growth: a variational approach, Arch. Ration. Mech. Anal., 210 (2013), 219-267.       
9 V. Bögelein, T. Lukkari and C. Scheven, The obstacle problem for the porous medium equation, (2014), preprint available from: https://www.mittag-leffler.se/preprints/files/IML-1314f-33.pdf
10 B. E. Dahlberg and C. E. Kenig, Non-negative solutions to fast diffusions, Rev. Mat. Iberoamericana, 4 (1988), 11-29.       
11 P. Daskalopoulos and C. E. Kenig, Degenerate Diffusions, EMS Tracts in Mathematics, 1, European Mathematical Society (EMS), Zürich, 2007.       
12 A. Dall'Aglio, Approximated solutions of equations with $L^1$ data. Application to the $H$-convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl., 170 (1996), 207-240.       
13 A. Dall'Aglio, D. Giachetti, C. Leone and S. Segura de León, Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 97-126.       
14 A. Dall'Aglio and L. Orsina, Nonlinear parabolic equations with natural growth conditions and $L^1$ data, Nonlinear Anal., 27 (1996), 59-73.       
15 E. DiBenedetto, U. Gianazza and V. Vespri, Harnack's Inequality for Degenerate and Singular Parabolic Equations, Springer Monographs in Mathematics. Springer, New York, 2012.
16 E. DiBenedetto, Degenerate Parabolic Equations, Springer Universitext, Springer, New York, 1993.       
17 T. Kilpeläinen and J. Malý, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 19 (1992), 591-613.       
18 T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math., 172 (1994), 137-161.       
19 J. Kinnunen and P. Lindqvist, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation, Ann. Mat. Pura Appl., 185 (2006), 411-435.       
20 J. Kinnunen and P. Lindqvist, Definition and properties of supersolutions to the porous medium equation, J. Reine Angew. Math., 618 (2008), 135-168.       
21 T. Lukkari, The porous medium equation with measure data, J. Evol. Equ., 10 (2010), 711-729.       
22 T. Lukkari, The fast diffusion equation with measure data, Nonlinear Differ. Equ. Appl., 19 (2011), 329-343.       
23 J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.       

Go to top