Journal of Industrial and Management Optimization (JIMO)

Stability of a cyclic polling system with an adaptive mechanism
Pages: 763 - 777, Issue 3, July 2015

doi:10.3934/jimo.2015.11.763      Abstract        References        Full text (353.9K)           Related Articles

Jeongsim Kim - Department of Mathematics Education, Chungbuk National University, 52 Naesudong-ro, Heungdeok-gu, Cheongju, Chungbuk, 361-763, South Korea (email)
Bara Kim - Department of Mathematics, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 136-701, South Korea (email)

1 E. Altman, P. Konstantopoulos and Z. Liu, Stability, monotonicity and invariant quantities in general polling systems, Queueing Systems, 11 (1992), 35-57.       
2 M. A. A. Boon, R. D. van der Mei and E. M. M. Winands, Applications of polling systems, Surveys in Operations Research and Management Science, 16 (2011), 67-82.
3 A. A. Borovkov and R. Schassberger, Ergodicity of a polling network, Stochastic Processes and their Applications, 50 (1994), 253-262.       
4 O. J. Boxma, J. Bruin and B. H. Fralix, Sojourn times in polling systems with various service disciplines, Performance Evaluation, 66 (2009), 621-639.
5 M. Bramson, Stability of two families of queueing networks and a discussion of fluid limits, Queueing Systems, 28 (1998), 7-31.       
6 N. Chernova, S. Foss and B. Kim, On the stability of a polling system with an adaptive service mechanism, Annals of Operations Research, 198 (2012), 125-144.       
7 J. G. Dai, On positive Harris recurrence of multiclass queueing networks: A unified approach via fluid limit models, The Annals of Applied Probability, 5 (1995), 49-77.       
8 J. G. Dai and S. P. Meyn, Stability and convergence of moments for multiclass queueing networks via fluid limit models, IEEE Transaction on Automatic Control, 40 (1995), 1889-1904.       
9 D. G. Down, On the stability of polling models with multiple servers, Journal of Applied Probability, 35 (1998), 925-935.       
10 C. Fricker, M. R. JaĆ­bi, Monotonicity and stability of periodic polling models, Queueing Systems, 15 (1994), 211-238.       
11 L. Georgiadis and W. Szpankowski, Stability of token passing rings, Queueing Systems, 11 (1992), 7-33.       
12 H. Levy and M. Sidi, Polling systems: Applications, modeling, and optimization, IEEE Transactions on Communications, 38 (1990), 1750-1760.
13 L. Massouli, Stability of non-Markovian polling systems, Queueing Systems, 21 (1995), 67-95.       
14 J. A. C. Resing, Polling systems and multitype branching processes, Queueing Systems, 13 (1993), 409-426.       
15 A. N. Rybko and A. L. Stolyar, Ergodicity of stochastic processes describing the operation of open queueing networks, Problems of Information Transmission, 28 (1992), 199-220.       
16 Z. Saffer and M. Telek, Stability of periodic polling system with BMAP arrivals, European Journal of Operational Research, 197 (2009), 188-195.       
17 H. Takagi, Analysis of Polling Systems, Performance Evaluation, 5 (1985), pp 206.
18 V. Vishnevsky and O. Semenova, Adaptive dynamical polling in wireless networks, Cybernetics and Information Technologies, 8 (2008), 3-11.       
19 V. Vishnevsky, A. N. Dudin, V. I. Klimenok and O. Semenova, Approximate method to study M/G/1-type polling system with adaptive polling mechanism, Quality Technology & Quantitative Management, 9 (2012), 211-228.
20 A. Wierman, E. M. M. Winands and O. J. Boxma, Scheduling in polling systems, Performance Evaluation, 64 (2007), 1009-1028.
21 A. C. C. van Wijka, I. J. B. F. Adan, O. J. Boxma and A. Wierman, Fairness and efficiency for polling models with the $k$-gated service discipline, Performance Evaluation, 69 (2012), 274-288.
22 E. M. M. Winands, I. J. B. F. Adan, G. J. van Houtum and D. G. Down, A state-dependent polling model with $k$-limited service, Probability in the Engineering and Informational Sciences, 23 (2009), 385-408.       

Go to top