`a`
Inverse Problems and Imaging (IPI)
 

Stability of the Calderón problem in admissible geometries
Pages: 939 - 957, Issue 4, November 2014

doi:10.3934/ipi.2014.8.939      Abstract        References        Full text (449.3K)           Related Articles

Pedro Caro - Instituto de Ciencias Matemáticas - CSIC, Nicolás Cabrera 13-15, Campus de Cantoblanco UAM, 28049 Madrid, Spain (email)
Mikko Salo - Department of Mathematics and Statistics, University of Helsinki and University of Jyväskylä, P.O. Box 35 FI-40014 Jyväskylä, Finland (email)

1 G. Alessandrini, Stable determination of conductivity by boundary measurements, Appl. Anal., 27 (1988), 153-172.       
2 G. Alessandrini, Open issues of stability for the inverse conductivity problem, J. Inv. Ill-Posed Probl., 15 (2007), 451-460.       
3 G. Alessandrini and S. Vessella, Lipschitz stability for the inverse conductivity problem, Adv. Appl. Math., 35 (2005), 207-241.       
4 K. Astala, M. Lassas and L. Päivärinta, Calderón's inverse problem for anisotropic conductivity in the plane, Comm. PDE, 30 (2005), 207-224.       
5 K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane, Ann. of Math., 163 (2006), 265-299.       
6 A. P. Calderón, On an Inverse Boundary Value Problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matemática, Río de Janeiro, 1980.       
7 P. Caro, On an inverse problem in electromagnetism with local data: Stability and uniqueness, Inverse Probl. Imaging, 5 (2011), 297-322.       
8 P. Caro, A. García and J. M. Reyes, Stability of the Calderón problem for less regular conductivities, J. Differential Equations, 254 (2013), 469-492.       
9 P. Caro, D. Dos Santos Ferreira and A. Ruiz, Stability estimates for the Radon transform with restricted data and applications, Adv. Math., 267 (2014), 523-564.       
10 P. Caro, D. Dos Santos Ferreira and A. Ruiz, Stability estimates for the Calderón problem with partial data, preprint, arXiv:1405.1217, (2014).
11 A. Clop, D. Faraco and A. Ruiz, Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities, Inverse Probl. Imaging, 4 (2010), 49-91.       
12 N.S. Dairbekov, G.P. Paternain, P. Stefanov and G. Uhlmann, The boundary rigidity problem in the presence of a magnetic field, Adv. Math., 216 (2007), 535-609.       
13 D. Dos Santos Ferreira, C. E. Kenig, M. Salo and G. Uhlmann, Limiting Carleman weights and anisotropic inverse problems, Invent. Math., 178 (2009), 119-171.       
14 D. Dos Santos Ferreira, C. E. Kenig and M. Salo, Determining an unbounded potential from Cauchy data in admissible geometries, Comm. PDE, 38 (2013), 50-68.       
15 D. Dos Santos Ferreira, Y. Kurylev, M. Lassas and M. Salo, The Calderón problem in transversally anisotropic geometries, J. Eur. Math. Soc, (to appear), arXiv:1305.1273.
16 B. Frigyik, P. Stefanov and G. Uhlmann, The X-ray transform for a generic family of curves and weights, J. Geom. Anal., 18 (2008), 89-108.       
17 B. Haberman and D. Tataru, Uniqueness in Calderon's problem with Lipschitz conductivities, Duke Math. J., 162 (2013), 497-516.       
18 H. Heck and J.-N. Wang, Stability estimates for the inverse boundary value problem by partial Cauchy data, Inverse Problems, 22 (2006), 1787-1796.       
19 H. Heck and J.-N. Wang, Optimal stability estimate of the inverse boundary value problem by partial measurements, preprint, 2007, arXiv:0708.3289.
20 H. Kang and K. Yun, Boundary determination of conductivities and Riemannian metrics via local Dirichlet-to-Neumann operator, SIAM J. Math. Anal., 34 (2003), 719-735.       
21 C. E. Kenig, M. Salo and G. Uhlmann, Inverse problems for the anisotropic Maxwell equations, Duke Math. J., 157 (2011), 369-419.       
22 C. E. Kenig, J. Sjöstrand and G. Uhlmann, The Calderón problem with partial data, Ann. of Math., 165 (2007), 567-591.       
23 K. Knudsen, M. Lassas, J. Mueller and S. Siltanen, Regularized D-bar method for the inverse conductivity problem, Inverse Problems and Imaging, 3 (2009), 599-624.       
24 J. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Commun. Pure Appl. Math., 42 (1989), 1097-1112.       
25 N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation, Inverse Problems, 17 (2001), 1435-1444.       
26 A. Nachman, Reconstructions from boundary measurements, Ann. Math., 128 (1988), 531-576.       
27 A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math., 143 (1996), 71-96.       
28 M. Salo, The Calderón problem on Riemannian manifolds, Chapter in Inverse Problems and Applications: Inside Out II (ed. G. Uhlmann), Math. Sci. Res. Inst. Publ., 60, Cambridge Univ. Press, Cambridge, 2013, 167-247.       
29 M. Salo and G. Uhlmann, The attenuated ray transform on simple surfaces, J. Diff. Geom., 88 (2011), 161-187.       
30 V. A. Sharafutdinov, Ray transform on Riemannian manifolds. Eight lectures on integral geometry, http://www.math.nsc.ru/~sharafutdinov/files/Lectures.pdf
31 P. Stefanov and G. Uhlmann, Stability estimates for the X-ray transform of tensor fields and boundary rigidity, Duke Math. J., 123 (2004), 445-467.       
32 J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.       
33 G. Uhlmann, Electrical impedance tomography and Calderón's problem, Inverse Problems, 25 (2009), 123011.
34 S. Vessella, A continuous dependence result in the analytic continuation problem, Forum Math., 11 (1999), 695-703.       

Go to top