Mathematical Biosciences and Engineering (MBE)

A double age-structured model of the co-infection of tuberculosis and HIV
Pages: 23 - 40, Issue 1, February 2015

doi:10.3934/mbe.2015.12.23      Abstract        References        Full text (678.4K)           Related Articles

Georgi Kapitanov - Mathematics Department, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067, United States (email)

1 A. L. Bauer, I. B. Hogue, S. Marino and D. Kirschner, The effects of hiv-1 infection on latent tuberculosis, Math. Model. Nat. Phenom., 3 (2008), 229-266.       
2 C. Currie, B. Williams, R. Cheng and C. Dye, Tuberculosis epidemics driven by hiv: Is prevention better than cure?, AIDS, 17 (2003), 2501-2508.
3 J. L. Flynn and J. Chan, Tuberculosis: Latency and reactivation, Infection and Immunity, 69 (2001), 4195-4201, URL http://iai.asm.org/content/69/7/4195.short.
4 T. D. Hollingsworth, R. M. Anderson and C. Fraser, Hiv-1 transmission, by stage of infection, Journal of Infectious Diseases, 198 (2008), 687-693.
5 D. Kirschner, Dynamics of co-infection with m. tuberculosis and hiv-1, Theor Popul Biol., 55 (1999), 94-109.
6 S. D. Lawn, A. D. Kerkhoff, M. Vogt and R. Wood, Hiv-associated tuberculosis: Relationship between disease severity and the sensitivity of new sputum-based and urine-based diagnostic assays, BMC Medicine, 11 (2013), p231.
7 P. Nunn, A. Reid and K. M. De Cock, Tuberculosis and hiv infection: The global setting, Journal of Infectious Diseases, 196 (2007), S5-S14.
8 W. H. Organization, Global tuberculosis report, 2013.
9 A. Pawlowski, M. Jansson, M. Sköld, M. Rottenberg and G. Källenius, Tuberculosis and hiv co-infection, PLoS Pathog, 8 (2012), e1002464.
10 L. Roeger, Z. Feng and C. Castillo-Chavez, Modeling tb and hiv co-infections, Math Biosci Eng, 6 (2009), 815-837.       
11 O. Sharomi, C. Podder, A. Gumel and B. Song, Mathematical analysis of the transmission dynamics of hiv/tb coinfection in the presence of treatment, Math Biosci Eng., 5 (2008), 145-174.       
12 X. Wang, J. Yang and F. Zhang, Dynamic of a tb-hiv coinfection epidemic model with latent age, Journal of Applied Mathematics, 2013 (2013), Art. ID 429567, 13 pp.       
13 G. F. Webb, Theory of Nonlinear Age-Dependant Population Dynamics, Monographs and Textbooks in Pure and Applied Mathematics Series 89. Marcel Dekker Inc., 1985.       

Go to top