Discrete and Continuous Dynamical Systems - Series A (DCDS-A)

On a Cahn-Hilliard type phase field system related to tumor growth
Pages: 2423 - 2442, Issue 6, June 2015

doi:10.3934/dcds.2015.35.2423      Abstract        References        Full text (449.4K)           Related Articles

Pierluigi Colli - Dipartimento di Matematica "F. Casorati", Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy (email)
Gianni Gilardi - Dipartimento di Matematica "F. Casorati", Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy (email)
Danielle Hilhorst - Laboratoire de Mathématiques, CNRS et Université de Paris-Sud, 91405 Orsay, France (email)

1 V. Barbu, Nonlinear Semigroups and Differential Equations in Banach spaces, Noordhoff International Publishing, Leyden, 1976.       
2 H. Brezis, Opérateurs Maximaux Monotones Et Semi-groupes de Contractions Dans Les Espaces de Hilbert, North-Holland Math. Stud. 5, North-Holland, Amsterdam, 1973.       
3 J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.
4 V. Cristini, H. B. Frieboes, X. Li, J. S. Lowengrub, P. Macklin, S. Sanga, S. M. Wise and X. Zheng, Nonlinear modeling and simulation of tumor growth, in Selected Topics in Cancer Modeling: Genesis, Evolution, Immune Competition, and Therapy, N. Bellomo, M. Chaplain, and E. De Angelis, eds., Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, (2008), 113-181.       
5 V. Cristini, X. Li, J. S. Lowengrub and S. M. Wise, Nonlinear simulations of solid tumor growth using a mixture model: Invasion and branching, J. Math. Biol., 58 (2009), 723-763.       
6 V. Cristini and J. S. Lowengrub, Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach, Cambridge University Press, Cambridge, 2010.
7 V. Cristini, J. S. Lowengrub and Q. Nie, Nonlinear simulation of tumor growth, J. Math. Biol., 46 (2003), 191-224.       
8 R. Denk, M. Hieber and J. Prüss, Optimal $L^p$-$L^q$-estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224.       
9 C. M. Elliott and A. M. Stuart, Viscous Cahn-Hilliard equation. II. Analysis, J. Differential Equations, 128 (1996), 387-414.       
10 C. M. Elliott and S. Zheng, On the Cahn-Hilliard equation, Arch. Rational Mech. Anal., 96 (1986), 339-357.       
11 S. Frigeri, M. Grasselli and E. Rocca, On a diffuse interface model of tumor growth, preprint arXiv:1405.3446 [math.AP] (2014), 1-27.
12 A. Hawkins-Daarud, K. G. van der Zee and J. T. Oden, Numerical simulation of a thermodynamically consistent four-species tumor growth model, Int. J. Numer. Methods Biomed. Eng., 28 (2012), 3-24.       
13 D. Hilhorst, J. Kampmann, T. N. Nguyen and K. G. van der Zee, Formal asymptotic limit of a diffuse-interface tumor-growth model, preprint (2013), 1-28, to appear in Math. Models Methods Appl. Sci..
14 J.-L. Lions, Quelques Méthodes de Résolution Des Problèmes Aux Limites Non Linéaires, Dunod; Gauthier-Villars, Paris, 1969.       
15 J. S. Lowengrub, H. B. Frieboes, F. Jin, Y.-L. Chuang, X. Li, P. Macklin, S. M. Wise and V. Cristini, Nonlinear modeling of cancer: Bridging the gap between cells and tumors, Nonlinearity, 23 (2010), R1-R91.       
16 J. T. Oden, A. Hawkins and S. Prudhomme, General diffuse-interface theories and an approach to predictive tumor growth modeling, Math. Models Methods Appl. Sci., 20 (2010), 477-517.       
17 R. E. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations, Math. Surveys Monogr. 49, American Mathematical Society, Providence, RI, 1997.       
18 J. Simon, Compact sets in the space $L^p(0,T; B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.       
19 S. Zheng, Nonlinear Evolution Equations, Chapman Hall/CRC Monogr. Surv. Pure Appl. Math. 133, Chapman & Hall/CRC, Boca Raton, FL, 2004.       

Go to top