`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

Dynamical complexity of a prey-predator model with nonlinear predator harvesting
Pages: 423 - 443, Issue 2, March 2015

doi:10.3934/dcdsb.2015.20.423      Abstract        References        Full text (4719.4K)           Related Articles

R. P. Gupta - Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur-208016, India (email)
Peeyush Chandra - Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur-208016, India (email)
Malay Banerjee - Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India (email)

1 G. Birkhoff and G. C. Rota, Ordinary Differential Equations, Ginn, Boston, 1962.       
2 S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], Springer-Verlag, New York, Berlin, 251 1982.       
3 C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, Wiley, New York, 1976.       
4 C. W. Clark, Bioeconomic Modelling and Fisheries Management, Wiley, New York, 1985.       
5 G. Dai and M. Tang, Coexistence region and global dynamics of a harvested predator-prey system, SIAM J. Appl. Math., 58 (1998), 193-210.       
6 T. Das, R. N. Mukherjee and K. S. Chaudhari, Bioeconomic harvesting of a prey-predator fishery, J. Biol. Dyn., 3 (2009), 447-462.       
7 H. I. Freedman and G. S. K. Wolkowicz, Predator-prey systems with group defence: The paradox of enrichment revisited, Bull. Math. Biol., 48 (1986), 493-508.       
8 R. P. Gupta and P. Chandra, Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting, J. Math. Anal. Appl., 398 (2013), 278-295.       
9 M. Haque, A detailed study of the Beddington-DeAngelis predator-prey model, Math. Biosci., 234 (2011), 1-16.       
10 S. B. Hsu, T. W. Hwang and Y. Kuang, Global dynamics of a predator-prey model with Hassell-Varley type functional response, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 857-871.       
11 S. V. Krishna, P. D. N. Srinivasu and B. Prasad Kaymakcalan, Conservation of an ecosystem through optimal taxation, Bull. Math. Biol., 60 (1998), 569-584.
12 A. Y. Kuznetsov, Elements of Applied Bifurcation Theory, Appl. Math. Sci., 112. Springer-Verlag, New York, 2004.       
13 B. Leard, C. Lewis and J. Rebaza, Dynamics of ratio-dependent predator-prey models with nonconstant harvesting, Discrete Contin. Dyn. Syst. Ser. S, 1 (2008), 303-315.       
14 P. Lenzini and J. Rebaza, Nonconstant predator harvesting on ratio-dependent predator-prey models, Appl. Math. Sci., 4 (2010), 791-803.       
15 Y. Li and D. Xiao, Bifurcations of a predator-prey system of Holling and Leslie types, Chaos Solitons Fractals, 34 (2007), 606-620.       
16 K. Mischaikow and G. S. K. Wolkowicz, A predator-prey system involving group defense: A connection matrix approach, Nonlin. Anal., Theory, Methods $&$ Applications, 14 (1990), 955-969.       
17 W. Murdoch, C. Briggs and R. Nisbet, Consumer-Resource Dynamics (MPB-36), New York, Princeton University Press, 2003.
18 G. J. Peng, Y. L. Jiang and C. P. Li, Bifurcations of a Holling-type II predator-prey system with constant rate harvesting, Int. J. Bifurc. Chaos Appl. Sci. Eng., 19 (2009), 2499-2514.       
19 G. J. Peng and Y. L. Jiang, Practical computation of normal forms of the Bogdonov-Takens bifurcation, Nonlinear Dyn., 66 (2011), 99-132.       
20 L. Perko, Differential Equations and Dynamical Systems, Springer, New York, 1996.       
21 T. Pradhan and K. S. Chaudhuri, Bioeconomic harvesting of a schooling fish species: A dynamic reaction model, Korean J. Comput. Appl. Math., 6 (1999), 127-141.       
22 J. Rebaza, Dynamics of prey threshold harvesting and refuge, J. Comput. Appl. Math., 236 (2012), 1743-1752.       
23 S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2001), 1445-1472.       
24 P. D. N. Srinivasu, Bioeconomics of a renewable resource in presence of a predator, Nonlin. Anal. Real World Appl., 2 (2001), 497-506.       
25 P. Turchin, Complex Population Dynamics: A Theoretical/Empirical Synthesis, Monographs in Population Biology, 35, Princeton Univ. Press, Princeton, NJ, 2003.       
26 G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system involving group defence, SIAM J. Appl. Math., 48 (1988), 592-606.       
27 D. Xiao and S. Ruan, Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting, Fields Inst. Commun., 21 (1999), 493-506.       
28 D. Xiao and L. Jennings, Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting, SIAM J. Appl. Math., 65 (2005), 737-753.       
29 D. Xiao, W. Li and M. Han, Dynamics in a ratio-dependent predator-prey model with predator harvesting, J. Math. Anal. Appl., 324 (2006), 14-29.       
30 H. Zhu, S. A. Campbell and G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 63 (2002), 636-682.       

Go to top