Discrete and Continuous Dynamical Systems - Series B (DCDS-B)

Remarks on pattern formation in a model for hair follicle spacing
Pages: 1555 - 1572, Issue 5, July 2015

doi:10.3934/dcdsb.2015.20.1555      Abstract        References        Full text (704.0K)           Related Articles

Peter Rashkov - Department of Mathematics and Informatics, Philipps-Universitat Marburg, Hans-Meerwein-Str., Lahnberge, 35032 Marburg, Germany (email)

1 S. Abdelmalek, H. Louafi and A. Youkana, Existence of global solutions for a Gierer-Meinhardt system with three equations, Electron. J. Differential Equations, 55 (2012), 1-8.       
2 R. E. Baker, E. A. Gaffney and P. K. Maini, Partial differential equations for self-organization in cellular and developmental biology, Nonlinearity, 21 (2008), R251-R290.       
3 M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Analysis, 8 (1971), 321-340.       
4 S. Chen, J. Shi and J. Wei, Bifurcation analysis of the Gierer-Meinhardt system with a saturation in the activator production, Appl. Anal., 93 (2014), 1115-1134.       
5 M. del Pino, A priori estimates and applications to existence-nonexistence for a semilinear elliptic system, Indiana Univ. Math. J., 43 (1994), 77-129.       
6 L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 2010.       
7 F. Hecht, New development in freefem++, J. Numer. Math., 20 (2012), 251-265.       
8 A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.
9 D. S. Grebenkov and B.-T. Nguyen, Geometrical structure of Laplacian eigenfunctions, SIAM Rev., 55 (2013), 601-667.       
10 H. Jiang, Global existence of solutions of an activator-inhibitor system, Discrete Contin. Dyn. Syst., 14 (2006), 737-751.       
11 P. Knabner and L. Angermann, Numerical Methods for Elliptic and Parabolic Partial Differential Equations, Texts in Applied Mathematics, 44. Springer-Verlag, New York, 2003.       
12 S. Kouachi, Global existence and boundedness of solutions for a general activator-inhibitor model, Mat. Vesnik, 66 (2014), 274-282.       
13 A. J. Koch and H. Meinhardt, Biological pattern formation: From basic mechanisms to complex structures, Rev. Mod Phys., 66 (1994), 1481-1507.
14 K. Masuda and K. Takahashi, Reaction-diffusion systems in the Gierer-Meinhardt theory of biological pattern formation, Japan J. Appl. Math., 4 (1987), 47-58.       
15 M. Li, S. Chen and Y. Qin, Boundedness and blow up for the general activator-inhibitor model, Acta Math. Appl. Sinica (English Ser.), 11 (1995), 59-68.       
16 J. D. Murray, Mathematical Biology, $2^{nd}$ edition, Springer-Verlag, Berlin, 1993.       
17 W.-M. Ni, K. Suzuki and I. Takagi, The dynamics of a kinetic activator-inhibitor system, J. Differential Equations, 229 (2006), 426-465.       
18 W.-M. Ni and I. Takagi, On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type, Trans. Amer. Math. Soc., 297 (1986), 351-368.       
19 Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal., 13 (1982), 555-593.       
20 M. Pierre, Global existence in reaction-diffusion systems with control of mass: a survey, Milan J. Math., 78 (2010), 417-455.       
21 F. Rothe, Global Solutions of Reaction-Diffusion Systems, Springer-Verlag, Berlin, 1984.       
22 S. Sick, S. Reinker, J. Timmer and T. Schlake, WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism, Science, 314 (2006), 1447-1450.
23 K. Suzuki and I. Takagi, On the role of basic production terms in an activator-inhibitor system modeling biological pattern formation, Funkc. Ekvac., 54 (2011), 237-274.       
24 I. Takagi, Stability of bifurcating solutions of the Gierer-Meinhardt system, Tôhoku Math. J., 31 (1979), 221-246.       
25 I. Takagi, A priori estimates for stationary solutions of an activator-inhibitor model due to Gierer and Meinhardt, Tôhoku Math. J., 34 (1982), 113-132.       
26 I. Takagi, Point-condensation for a reaction-diffusion system, J. Differential Equations, 61 (1986), 208-249.       
27 T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Springer-Verlag, New York-Heidelberg, 1975.       

Go to top