Discrete and Continuous Dynamical Systems - Series A (DCDS-A)

Quasistatic evolution of magnetoelastic plates via dimension reduction
Pages: 5999 - 6013, Issue 12, December 2015

doi:10.3934/dcds.2015.35.5999      Abstract        References        Full text (412.3K)           Related Articles

Martin Kružík - Institute of Information Theory and Automation of the ASCR, Pod vodárenskou věží 4, 182 08 Prague, Czech Republic (email)
Ulisse Stefanelli - Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria (email)
Chiara Zanini - Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy (email)

1 N. Anuniwat, M. Ding, S. J. Poon, S. A. Wolf and J. Lu, Strain-induced enhancement of coercivity in amorphous TbFeCo films, J. Appl. Phys., 113 (2013), 043905.
2 J.-F. Babadjian, Quasistatic evolution of a brittle thin film, Calc. Var. Partial Differential Equations, 26 (2006), 69-118.       
3 B. Benešová, M Kružík and G. Pathó, A mesoscopic thermomechanically coupled model for thin-film shape-memory alloys by dimension reduction and scale transition, Contin. Mech. Thermodyn., 26 (2014), 683-713.       
4 A.-L. Bessoud, M. Kružík and U. Stefanelli, A macroscopic model for magnetic shape memory alloys, Z. Angew. Math. Phys., 64 (2013), 343-359.       
5 A.-L. Bessoud and U. Stefanelli, Magnetic shape memory alloys: Three-dimensional modeling and analysis, Math. Models Meth. Appl. Sci., 21 (2011), 1043-1069.       
6 A. Braides, $\Gamma$-Convergence for Beginners, Oxford University Press, Oxford, 2002.       
7 W. F. Brown, Micromagnetics, {Wiley, New-York, 1963.}
8 C. Chappert and P. Bruno, Magnetic anisotropy in metallic ultrathin films and related experiments on cobalt films, J. Appl. Phys., 64 (1988), p5736.
9 G. Dal Maso, An Introduction to $\Gamma$-Convergence, Birkhäser, Basel, 1993.       
10 D. Davino, P. Krejčí and C. Visone, Fully coupled modeling of magnetomechanical hysteresis through thermodynamic compatibility, Smart Mat. Struct., 22 (2013), 095009.
11 E. Davoli, Linearized plastic plate models as $\Gamma$-limits of 3D finite elastoplasticity, ESAIM Control Optim. Calc. Var., 20 (2014), 725-747.       
12 E. Davoli, Quasistatic evolution models for thin plates arising as low energy $\Gamma$-limits of finite plasticity, Math. Models Methods Appl. Sci., 24 (2014), 2085-2153.       
13 E. Davoli and M. G. Mora, A quasistatic evolution model for perfectly plastic plates derived by Gamma-convergence, Ann. Inst. H. Poincaré Anal. Nonlin., 30 (2013), 615-660.       
14 A. DeSimone and G. Dolzmann, Existence of minimizers for a variational problem in two-dimensional nonlinear magnetoelasticity, Arch. Rational Mech. Anal., 144 (1998), 107-120.       
15 A. DeSimone and R. D. James, A constrained theory of magnetoelasticity, J. Mech. Phys. Solids, 50 (2002), 283-320.       
16 A. Dorfmann and R. W. Ogden, Some problems in nonlinear magnetoelasticity, Z. Angew. Math. Phys., 56 (2005), 718-745.       
17 L. Freddi, R. Paroni and C. Zanini, Dimension reduction of a crack evolution problem in a linearly elastic plate, Asymptotic Anal., 70 (2010), 101-123.       
18 L. Freddi, T. Roubíček, R. Paroni and C. Zanini, Quasistatic delamination models for Kirchhoff-Love plates, Z. Angew. Math. Mech., 91 (2011), 845-865.       
19 L. Freddi, T. Roubíček and C. Zanini, Quasistatic delamination of sandwich-like Kirchhoff-Love plates, J. Elasticity, 113 (2013), 219-250.       
20 V. Gehanno, A. Marty, B. Gilles and Y. Samson, Magnetic domains in epitaxial ordered FePd(001) thin films with perpendicular magnetic anisotropy, Phys. Rev. B, 55 (1997), 12552-12555.
21 G. Gioia and R. D. James, Micromagnetics of very thin films, Proc. Roy. Soc. Lond. A, 453 (1997), 213-223.
22 M. L. Hodgdon, Applications of a theory of ferromagnetic hysteresis, IEEE Trans. Mag., 24 (1988), 218-221.
23 A. Hubert and R. Schäfer, Magnetic Domains, Springer, New York, 1998.
24 R. D. James, Configurationsl forces in magnetism with application to the dynamics of a small-scale ferromagnetic shape memory cantilever, Contin. Mech. Thermodyn., 14 (2002), 55-86.       
25 R. D. James and D. Kinderlehrer, Frustration in ferromagnetic materials, Continuum Mech. Thermodyn., 2 (1990), 215-239.       
26 M. Kaltenbacher, M. Meiler and M. Ertl, Physical modeling and numerical computation of magnetostriction, COMPEL, 28 (2009), 819-832.       
27 M. Kružík and A. Prohl, Recent developments in modeling, analysis and numerics of ferromagnetism, SIAM Review, 48 (2006), 439-483.       
28 M. Liero and A. Mielke, An evolutionary elastoplastic plate model derived via $\Gamma$-convergence, Math. Models Meth. Appl. Sci., 21 (2011), 1961-1986.       
29 M. Liero and T. Roche, Rigorous derivation of a plate theory in linear elastoplasticity via $\Gamma$-convergence, NoDEA Nonlinear Differential Eq. Applications, 19 (2012), 437-457.       
30 A. Mielke, Evolution in rate-independent systems (ch. 6), in Handbook of Differential Equations, Evolutionary Equations (eds. C. Dafermos and E. Feireisl), Vol. 2, Elsevier B. V., 2005, 461-559.       
31 A. Mielke, A mathematical framework for generalized standard materials in the rate-independent case, in Multifield Problems in Solid and Fluid Mechanics (eds. R. Helmig, A. Mielke and B. Wohlmuth), Series Lecture Notes in Applied and Computational Mechanics, 28, Springer, 2006, 399-428.       
32 A. Mielke, Generalized Prandtl-Ishlinskii operators arising from homogenization and dimension reduction, Phys. B, 407 (2012), 1330-1335.
33 A. Mielke and T. Roubíček, Numerical approaches to rate-independent processes and applications in inelasticity, M2AN Math. Model. Numer. Anal., 43 (2009), 399-428.       
34 A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-imits and relaxations for rate-independent evolutionary problems, Calc. Var. Partial Differential Equations, 31 (2008), 387-416.       
35 A. Mielke and F. Theil, On rate-independent hysteresis model, NoDEA Nonlinear Diff. Equations Applications, 11 (2004), 151-189.       
36 L. Néel, L'approche a la saturation de la magnétostriction, J. Phys. Radium, 15 (1954), 376-378.
37 H. J. Richter, The transition from longitudinal to perpendicular recording, J. Phys. D: Appl. Phys., 40 (2007), R149-R177.
38 R. T. Rockafellar and R. J.-B Wets, Variational Analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 317, Springer-Verlag, Berlin, 2009.       
39 T. Roubíček and M. Kružík, Microstructure evolution model in micromagnetics, Z. Angew. Math. Phys., 55 (2004), 159-182.       
40 T. Roubíček and M. Kružík, Mesoscopic model for ferromagnets with isotropic hardening, Z. Angew. Math. Phys., 56 (2005), 107-135.       
41 T. Roubíček and U. Stefanelli, Magnetic shape-memory alloys: Thermomechanical modeling and analysis, Contin. Mech. Thermodyn., 26 (2014), 783-810.       
42 T. Roubíček and G. Tomassetti, Phase transformations in electrically conductive ferromagnetic shape-memory alloys, their thermodynamics and analysis, Arch. Ration. Mech. Anal., 210 (2013), 1-43.       
43 P. Rybka and M. Luskin, Existence of energy minimizers for magnetostrictive materials, SIAM J. Math. Anal., 36 (2005), 2004-2019.       
44 B. Schulz and K. Baberschke, Crossover form in-plane to perpendicular magnetization in ultrathin Ni/Cu(001) films, Phys. Rev. B, 50 (1994), 13467.
45 A. D. C. Viegas, M. A. Correa, L. Santi, R. B. da Silva, F. Bohn, M. Carara and R. L. Somme, Thickness dependence of the high-frequency magnetic permeability in amorphous $Fe_{73.5}Cu_1Nb_3Si_{13.5}B_9$ thin films, J. Appl. Phys., 101 (2007), 033908.
46 A. Visintin, Modified Landau-Lifshitz equation for ferromagnetism, Phys. B, 233 (1997), 365-369.
47 A. Visintin, Maxwell's equations with vector hysteresis, Arch. Ration. Mech. Anal., 175 (2005), 1-37.       
48 J. Wang and P. Steinmann, A variational approach towards the modeling of magnetic field-induced strains in magnetic shape memory alloys, J. Mech. Phys. Solids, 60 (2012), 1179-1200.       

Go to top