`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

On the Markov-Dyck shifts of vertex type
Pages: 403 - 422, Issue 1, January 2016

doi:10.3934/dcds.2016.36.403      Abstract        References        Full text (445.8K)           Related Articles

Kengo Matsumoto - Department of Mathematics, Joetsu University of Education, Joetsu 943-8512, Japan (email)

1 M.-P. Béal, M. Blockelet and C. Dima, Sofic-Dick shifts, preprint, arXiv:1305.7413.
2 A. Costa and B. Steinberg, A categorical invariant of flow equivalence of shifts, Ergodic Theory and Dynamical Systems, 74 (2014), 44pp, arXiv:1304.3487.
3 J. Cuntz, Simple $C^*$-algebras generated by isometries, Commun. Math. Phys., 57 (1977), 173-185.       
4 J. Cuntz and W. Krieger, A class of $C^*$-algebras and topological Markov chains, Inventions Math., 56 (1980), 251-268.       
5 E. Deutsch, Dyck path enumeration, Discrete Math., 204 (1999), 167-202.       
6 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley, New York, 1983.       
7 T. Hamachi, K. Inoue and W. Krieger, Subsystems of finite type and semigroup invariants of subshifts, J. Reine Angew. Math., 632 (2009), 37-61.       
8 T. Hamachi and W. Krieger, A construction of subshifts and a class of semigroups, preprint, arXiv:1303.4158.
9 F. Harry, Line graphs, in Graph Theory, Massachusetts, Addison-Wesley, (1972), 71-83.
10 G. Keller, Circular codes, loop counting, and zeta-functions, J. Combinatorial Theory, 56 (1991), 75-83.       
11 B. P. Kitchens, Symbolic Dynamics, Springer-Verlag, Berlin, Heidelberg and New York, 1998.       
12 W. Krieger, On the uniqueness of the equilibrium state, Math. Systems Theory, 8 (1974), 97-104.       
13 W. Krieger, On a syntactically defined invariant of symbolic dynamics, Ergodic Theory Dynam. Systems, 20 (2000), 501-516.       
14 W. Krieger, On subshifts and semigroups, Bull. London Math., 38 (2006), 617-624.       
15 W. Krieger and K. Matsumoto, Zeta functions and topological entropy of the Markov Dyck shifts, Münster J. Math., 4 (2011), 171-183.       
16 W. Krieger and K. Matsumoto, Markov-Dyck shifts, neutral periodic points and topological conjugacy (tentative title), in preparation.
17 D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.       
18 K. Matsumoto, Cuntz-Krieger algebras and a generalization of Catalan numbers, Int. J. Math., 24 (2013), 1350040, 31pp.       
19 K. Matsumoto, $C^*$-algebras arising from Dyck systems of topological Markov chains, Math. Scand., 109 (2011), 31-54.       
20 R. P. Stanley, Enumerative Combinatrics I, Wadsworth & Brooks/Cole Advanced Books, Monterey, CA, 1986.       

Go to top