Discrete and Continuous Dynamical Systems - Series A (DCDS-A)

Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment
Pages: 953 - 969, Issue 2, February 2016

doi:10.3934/dcds.2016.36.953      Abstract        References        Full text (400.1K)           Related Articles

Yuan Lou - Institute for Mathematical Sciences, Renmin University of China, Haidian District, Beijing, 100872, China (email)
Dongmei Xiao - Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China (email)
Peng Zhou - Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada (email)

1 R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Ser. Math. Comput Biol., Wiley and Sons, 2003.       
2 R. S. Cantrell, C. Cosner and Y. Lou, Movement toward better environments and the evolution of rapid diffusion, Math. Biosci., 204 (2006), 199-214.       
3 R. S. Cantrell, C. Cosner and Y. Lou, Advection-mediated coexistence of competing species, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 497-518.       
4 X. F. Chen, R. Hambrock and Y. Lou, Evolution of conditional dispersal: A reaction-diffusion-advection model, J. Math. Biol., 57 (2008), 361-386.       
5 X. F. Chen, K.-Y. Lam and Y. Lou, Dynamics of a reaction-diffusion-advection model for two competing species, Discrete Contin. Dyn. Syst. A, 32 (2012), 3841-3859.       
6 X. F. Chen and Y. Lou, Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model, Indiana Univ. Math. J., 57 (2008), 627-658.       
7 C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn. Syst. A, 34 (2014), 1701-1745.       
8 K. A. Dahmen, D. R. Nelson and N. M. Shnerb, Life and death near a windy oasis, J. Math. Biol., 41 (2000), 1-23.       
9 M. M. Desai and D. R. Nelson, A quasispecies on a moving oasis, Theor. Pop. Biol., 67 (2005), 33-45.
10 J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion model, J. Math. Biol., 37 (1998), 61-83.       
11 A. Hastings, Can spatial variation alone lead to selection for dispersal?, Theor. Pop. Biol., 24 (1983), 244-251.
12 M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspekhi Mat. Nauk (N. S.), 3 (1948), 3-95.       
13 K.-Y. Lam, Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model, J. Differential Equations, 250 (2011), 161-181.       
14 K.-Y. Lam, Limiting profiles of semilinear elliptic equations with large advection in population dynamics II, SIAM J. Math. Anal., 44 (2012), 1808-1830.       
15 K.-Y. Lam and W.-M. Ni, Limiting profiles of semilinear elliptic equations with large advection in population dynamics, Discrete Contin. Dyn. Syst. A, 28 (2010), 1051-1067.       
16 Y. Lou and P. Zhou, Evolution of dispersal in advective homogeneous environment: The effect of boundary conditions, J. Differential Equations, 159 (2015), 141-171.       
17 F. Lutscher, M. A. Lewis and E. McCauley, Effects of heterogeneity on spread and persistence in rivers, Bull. Math. Biol., 68 (2006), 2129-2160.       
18 F. Lutscher, E. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Rev., 47 (2005), 749-772.       
19 W.-M. Ni, The Mathematics of Diffusion, CBMS Reg. Conf. Ser. Appl. Math., 82, SIAM, Philadelphia, 2011.       
20 A. Potapov, U. E. Schl├Ągel and M. A. Lewis, Evolutionarily stable diffusive dispersal, Discrete Contin. Dyn. Syst. Series B, 19 (2014), 3319-3340.       
21 H. Smith, Monotone Dynamical System. An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr., 41 Amer. Math. Soc., Providence, RI, 1995.       
22 D. C. Speirs and W. S. C. Gurney, Population persistence in rivers and estuaries, Ecology, 82 (2001), 1219-1237.
23 O. Vasilyeva and F. Lutscher, Population dynamics in rivers: Analysis of steady states, Can. Appl. Math. Quart., 18 (2010), 439-469.       

Go to top