`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

Entropy and actions of sofic groups
Pages: 3375 - 3383, Issue 10, December 2015

doi:10.3934/dcdsb.2015.20.3375      Abstract        References        Full text (302.3K)           Related Articles

Benjamin Weiss - Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel (email)

1 R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319.       
2 L. Bowen, A measure-conjugacy invariant for free group actions, Annals of Math., 171 (2010), 1387-1400.       
3 L. Bowen, Measure conjugacy invariants for actions of countable sofic groups, J. Amer. Math. Soc., 23 (2010), 217-245.       
4 L. Bowen, Weak isomorphisms between Bernoulli shifts, Israel J. Math., 183 (2011), 93-102.       
5 M. Gromov, Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc., 1 (1999), 109-197.       
6 M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps. I, Math. Phys. Anal. Geom., 2 (1999), 323-415.       
7 M. Keane and M. Smorodinsky, Bernoulli schemes of the same entropy are finitarily isomorphic, Ann. of Math., 109 (1979), 397-406.       
8 D. Kerr, Sofic measure entropy via finite partitions, Groups Geom. Dyn., 7 (2013), 617-632.       
9 D. Kerr, Bernoulli actions of sofic groups have completely positive entropy, Israel J. Math., 202 (2014), 461-474.       
10 D. Kerr and H. Li, Entropy and the variational principle for actions of sofic groups, Invent. Math., 186 (2011), 501-558.       
11 H. Li, Sofic mean dimension, Adv. Math., 244 (2013), 570-604.       
12 E. Lindenstrauss, Mean dimension, small entropy factors and an embedding theorem, Inst. Hautes Études Sci. Publ. Math., 89 (1999), 227-262.       
13 E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel J. Math., 115 (2000), 1-24.       
14 D. Ornstein, Newton's laws and coin tossing, Notices Amer. Math. Soc., 60 (2013), 450-459.       
15 D. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math., 48 (1987), 1-141.       
16 V. A. Rohlin, Generators in ergodic theory, Vest. Leningrad Univ., 18 (1963), 26-32.       
17 V. Rohlin and Y. Sinai, The structure and properties of invariant measurable partitions, Dokl. Akad. Nauk SSSR, 141 (1961), 1038-1041.       
18 D. Rudolph and B. Weiss, Entropy and mixing for amenable group actions, Ann. of Math., 151 (2000), 1119-1150.       
19 A. Stepin, Bernoulli shifts on groups, Dokl. Akad. Nauk SSSR, 223 (1975), 300-302.       
20 J.-P. Thouvenot, Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l'un est un schéma de Bernoulli, Israel J. Math., 21 (1975), 177-207.       
21 B. Weiss, Sofic groups and dynamical systems, Sankhya Series A, 62 (2000), 350-359.       

Go to top