Realizing subexponential entropy growth rates by cutting and stacking
Pages: 3435  3459,
Issue 10,
December
2015
doi:10.3934/dcdsb.2015.20.3435 Abstract
References
Full text (469.6K)
Related Articles
Frank Blume  Department of Mathematics, John Brown University, 2000 W. University St, Siloam Springs, AR 72761, United States (email)
1 
F. Blume, An entropy estimate for infinite interval exchange transformations, Mathematische Zeitschrift, 272 (2012), 1729. 

2 
F. Blume, Minimal rates of entropy convergence for completely ergodic systems, Israel Journal of Mathematics, 108 (1998), 112. 

3 
F. Blume, Minimal rates of entropy convergence for rank one systems, Discrete and Continuous Dynamical Systems, 6 (2000), 773796. 

4 
F. Blume, On the relation between entropy and the average complexity of trajectories in dynamical systems, Computational Complexity, 9 (2000), 146155. 

5 
F. Blume, On the relation between entropy convergence rates and Baire category, Mathematische Zeitschrift, 271 (2012), 723750. 

6 
F. Blume, Possible rates of entropy convergence, Ergodic Theory and Dynamical Systems, 17 (1997), 4570. 

7 
F. Blume, The Rate of Entropy Convergence, Doctoral Dissertation, University of North Carolina at Chapel Hill, 1995. 

8 
A. Katok and J.P. Thouvenot, Slow entropy type invariants and smooth realization of commuting measurepreserving transformations, Annales de l'Institut Henri Poincare (B) Probability and Statistics, 33 (1997), 323338. 

9 
W. Parry, Entropy and Generators in Ergodic Theory, Benjamin, New York, 1969. 

10 
K. E. Petersen, Ergodic Theory, Cambridge University Press, New York, 1983. 

Go to top
