Discrete and Continuous Dynamical Systems - Series A (DCDS-A)

Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing
Pages: 5201 - 5221, Issue 9, September 2016

doi:10.3934/dcds.2016026      Abstract        References        Full text (523.6K)           Related Articles

Shihui Zhu - Department of Mathematics, Sichuan Normal University, Chengdu, Sichuan 610066, China (email)

1 M. S. Alber, R. Camassa, D. D. Holm and J. E. Marsden, The geometry of peaked solitons and billiard solutions of a class of integrable PDE's, Lett. Math. Phys., 32 (1994), 137-151.       
2 N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces, Studia Math., 57 (1976), 147-190.       
3 R. Beals, D. H. Sattinger and J. Szmigielski, Multi-peakons and a theorem of Stieltjes, Inverse Problems, 15 (1999), L1-L4.       
4 A. Bressan and A. Constantin, Global conservative solutions to the Camassa-Holm equation, Arch. Rat. Mech. Anal., 183 (2007), 215-239.       
5 A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl., 5 (2007), 1-27.       
6 A. Bressan, G. Chen and Q. Zhang, Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics, Discr. Cont. Dyn. Syst., 35 (2015), 25-42.       
7 A. Bressan, G. Chen and Q. Zhang, Unique conservative solutions to a variational wave equation, Arch. Rat. Mech. Anal., 217 (2015), 1069-1101.       
8 G. Chen and Y. Shen, Existence and regularity of solutions in nonlinear wave equations, Discr. Cont. Dyn. Syst., 35 (2015), 3327-3342.       
9 G. Chen, Y. Shen and S. Zhu, Global well-posedness of weak solutions for a generalized water wave equation, preprint.
10 R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.       
11 A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.       
12 A. Constantin, V. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207.       
13 A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis, Fluid Dynam. Res., 40 (2008), 175-211.       
14 A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.       
15 A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949-982.       
16 A. Constantin and L. Molinet, Orbital stability of solitary waves for a shallow water equation, Physica D, 157 (2001), 75-89.       
17 A. Constantin and W. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.       
18 K. E. Dika and L. Molinet, Stability of multipeakons, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 26 (2009), 1517-1532.       
19 L. C. Evans, Partial Differential Equations, Second edition, American Mathematical Society, Providence, RI, 2010.       
20 B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Physica D, 4 (1981/1982), 47-66.       
21 H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation- a Lagrangian point of view, Comm. Partial Differential Equations, 32 (2007), 1511-1549.       
22 R. I. Ivanov, Water waves and integrability, Philos. Trans. Roy. Soc. Lond. Ser. A, 365 (2007), 2267-2280.       
23 M. Lakshmanan, Integrable nonlinear wave equations and possible connections to tsunami dynamics, in: Tsunami and Nonlinear Waves, Springer, Berlin, (2007), 31-49.       
24 Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.       
25 Z. Xin and P. Zhang, On the uniqueness and large time behavior of the weak solutions to a shallow water equation, Comm. Partial Differential Equations, 27 (2002), 1815-1844.       

Go to top