`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

A model of infectious salmon anemia virus with viral diffusion between wild and farmed patches
Pages: 1869 - 1893, Issue 6, August 2016

doi:10.3934/dcdsb.2016027      Abstract        References        Full text (698.9K)           Related Articles

Evan Milliken - Department of Mathematics, University of Florida, 1400 Stadium Rd, Gainesville, FL 32611, United States (email)
Sergei S. Pilyugin - Department of Mathematics, University of Florida, 1400 Stadium Road, Gainesville, FL 32611, United States (email)

1 E. Beretta and Y. Kuang, Modeling and analysis of marine bacteriophage infection, Math. Biosci., 149 (1998), 57-76.       
2 G. Butler, H. I. Freedman and P. Waltman, Uniformly persistent systems, Proc. Am. Math. Soc., 96 (1986), 425-430.       
3 G. Butler and P. Waltman, Persistence in dynamical systems, J. Differ. Equ., 63 (1986), 255-263.       
4 P. DeLeenheer and S. S. Pilyugin, Multistrain virus dynamics with mutations: A global analysis, Math. Med. Biol., 25 (2008), 285-322.
5 K. Falk, E. Namork, E. Rimstad, S. Mjaaland and B. H. Dannevig, Characterization of infectious salmon anemia virus, an orthomyxo-like virus isolated from Atlantic salmon (Salmo salar L.), J. Virol., 71 (1997), 9016-9023.
6 A. Fonda, Uniformly persistent semidynamical systems, Proc. Am. Math. Soc., 104 (1988), 111-116.       
7 H. I. Freedman, S. Ruan and M. Tang, Uniform persistence and flows near a closed positively invariant set, J. Dyn. Differ. Equ., 6 (1994), 583-600.       
8 B. Garay, Uniform persistence and chain recurrence, J. Math. Anal. Appl., 139 (1989), 372-381.       
9 M. G. Godoy, et al. Infectious salmon anemia virus (ISAV) in Chilean Atlantic salmon (Salmo salar) aquaculture: emergence of low pathogenic ISAV-HPR0 and re-emergence of ISAV-HPR$\Delta$: HPR3 and HPR14, Virol. J., 10 (2013), p344.
10 J. K. Hale and H. Ko├žak, Dynamics and Bifurcations, Volume 3, Springer-Verlag, New York, 1991.       
11 J. A. P. Heesterbeek, A brief history of $\mathcalR_0$ and a recipe for its calculation, Acta Biotheor., 50 (2002), 189-204.
12 J. Hofbauer and J. W.-H. So. Uniform persistence and repellers for maps, Proc. Am. Math. Soc., 107 (1989), 1137-1142.       
13 V. Hutson and K. Schmitt, Permanence and the dynamics of biological systems, Math. Biosci., 111 (1992), 1-71.       
14 M. Krkosek, M. A. Lewis and J. P. Volpe, Transmission dynamics of parasitic sea lice from farm to wild salmon, Proc. R. Soc. B, 272 (2005), 689-696.
15 F. O. Mardones, A. M. Perez and T. E. Carpenter, Epidemiological investigation of the re-emergence of infectious salmon anemia virus in Chile, Dis. Aquat. Organ., 84 (2009), 105-114.
16 M. Nowak and R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, Oxford, UK, 2000.       
17 A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-I: Dynamics in vivo, SIAM Rev., 41 (1999), 3-44.       
18 H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, AMS, Providence, RI, 1995.       
19 H. L. Smith and P. DeLeenheer, Virus dynamics: A global analysis, SIAM J. Appl. Math., 63 (2003), 1313-1327.       
20 H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, New York, 1995.       
21 H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an epidemic model), SIAM J. Math. Anal., 24 (1993), 407-435.       
22 H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, 2003.       
23 S. Vike, S. Nylund and A. Nylund, ISA virus in Chile: Evidence of vertical transmission, Arch. Virol., 154 (2009), 1-8.
24 P. Waltman, A brief history of persistence in dynamical systems, in Delay differential equations and and dynamical systems (eds. S. Busenberg and M. Martelli), Lecture Notes in Mathematics, Volume 1475, Springer, (1991), 31-40.       

Go to top