Discrete and Continuous Dynamical Systems - Series B (DCDS-B)

Intracellular protein dynamics as a mathematical problem
Pages: 2551 - 2566, Issue 8, October 2016

doi:10.3934/dcdsb.2016060      Abstract        References        Full text (499.9K)           Related Articles

Mirosław Lachowicz - Faculty of Mathematics, Informatics and Mechanics, Institute of Applied Mathematics and Mechanics, University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland (email)
Martin Parisot - INRIA Paris, ANGE Project-Team, 75589 Paris Cedex 12, France (email)
Zuzanna Szymańska - ICM, University of Warsaw, ul. Pawińskiego 5a, 02-106 Warsaw, Poland (email)

1 S. Agrawal, C. Archer and D. V. Schaffer, Computational models of the notch network elucidate mechanisms of context-dependent signaling, PLoS Comput. Biol., 5 (2009), e1000390.
2 B. Alberts, D. Bray, K. Hopkin, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, Essential Cell Biology, $2^{nd}$ edition, Garland Science/Taylor & Francis Group, 2004.
3 A. Cangiani and R. Natalini, A spatial model of cellular molecular trafficking including active transport along microtubules, J. Theor. Biol., 267 (2010), 614-625.       
4 M. A. J. Chaplain, M. Ptashnyk and M. Sturrock, Hopf bifurcation in a gene regulatory network model: Molecular movement causes oscillations, Math. Models Methods Appl. Sci., 25 (2015), 1179-1215.       
5 M. A. J. Chaplain, M. Sturrock and A. J. Terry, Spatio-temporal modelling of intracellular signalling pathways: Transcription factors, negative feedback systems and oscillations, in New Challenges for Cancer Systems Biomedicine (eds. A. d'Onofrio, P. Cerrai and A. Gandolfi), SIMAI Springer Series, (2012), 55-82.
6 J. Claus, E. Friedmann, U. Klingmüller, R. Rannacher and T. Szekeres, Spatial aspects in the SMAD signaling pathway, J Math Biol., 67 (2013), 1171-1197.       
7 G. Craciun, B. Aguda and A. Friedman, Mathematical analysis of a modular network coordinating the cell cycle and apoptosis, Math Biosci Eng., 2 (2005), 473-485.       
8 J. Eliaš and J. Clairambault, Reaction-diffusion systems for spatio-temporal intracellular protein networks: A beginner's guide with two examples, Comput Struct Biotechnol J., 10 (2014), 12-22.
9 E. Friedmann, R. Neumann and R. Rannacher, Well-posedness of a linear spatio-temporal model of the JAK2/STAT5 signaling pathway, Comm. Math. Analysis, 15 (2013), 76-102.       
10 H. Momiji and N. A. M. Monk, Dissecting the dynamics of the Hes1 genetic oscillator, J. Theor. Biol., 254 (2008), 784-798.
11 N. A. M. Monk, Oscillatory expression of Hes1, p53, and NF-k B driven by transcriptional time delays, Curr. Biol., 13 (2003), 1409-1413.
12 M. Sturrock, A. J. Terry, D. P. Xirodimas, A. M. Thompson and M. A. J. Chaplain, Spatiotemporal modelling of the Hes1 and p53-Mdm2 intracellular signalling pathways, J. Theor. Biol., 273 (2011), 15-31.       
13 M. Sturrock, A. J. Terry, D. P. Xirodimas, A. M. Thompson and M. A. J. Chaplain, Influence of the nuclear membrane, active transport, and cell shape on the Hes1 and p53-Mdm2 pathways: Insights from spatio-temporal modelling, Bull. Math. Biol., 74 (2012), 1531-1579.       
14 Z. Szymańska, M. Parisot and M. Lachowicz, Mathematical modeling of the intracellular protein dynamics: The importance of active transport along microtubules, J. Theor. Biol., 363 (2014), 118-128.       

Go to top