Stability analysis of a twostrain epidemic model on complex
networks with latency
Pages: 2851  2866,
Issue 8,
October
2016
doi:10.3934/dcdsb.2016076 Abstract
References
Full text (804.9K)
Related Articles
Junyuan Yang  Department of Applied Mathematics, Yuncheng University, Yuncheng 044000, Shanxi, China (email)
Yuming Chen  Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada (email)
Jiming Liu  Department of Computer Science, Hongkong Baptist University, Kowloon Tong, Hongkong, China (email)
1 
A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509512. 

2 
T. Cohen and M. Murray, Modeling epidemics of multidrugresistant M. tuberculosis of heterogeneous fitness, Nat Med., 10 (2004), 11171121. 

3 
P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 2948. 

4 
Z. Feng, C. CastilloChavez and A. Capurro, A model for Tuberculosis with exogenous reinfection, Theoretical Population Biology, 57 (2000), 235247. 

5 
Z. Feng, M. Iannelli and F. A. Milner, A twostrain tuberculosis model with age of infection, SIAM J. Appl. Math., 62 (2002), 16341656. 

6 
X. C. Fu, S. Michael and G. R. Chen, Propagation Dynamics on Complex Networks, Models, Methods and Stability Analysis, Higher Education Press. Beijing, 2014. 

7 
J. K. Hale and P. Waltman, Persistence in infinite dimensional systems, SIAM J. Math. Anal., 20 (1989), 388395. 

8 
C. H. Li, C. C. Tsai and S. Y. Yang, Analysis of epidemic spreading of an SIRS model in complex heterogeneous networks, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 10421054. 

9 
M. E. J. Newman, Threshold effects for two pathogens spreading on a network, Phys. Rev. Lett., 95 (2005), 108701. 

10 
R. PastorSatorras and A. Vespignani, Epidemic spreading in scalefree networks, Phys. Rev. Lett., 86 (2001), 32003203. 

11 
R. PastorSatorras and A. Vespignani, Epidemic dynamics and endemic states in complex networks, Phys. Rev. E., 63 (2001), 066117. 

12 
R. PastorSatorras and A. Vespignani, Immunization of complex networks, Phys. Rev. E., 65 (2002), 036104. 

13 
L. Perko, Differential Equations and Dynamical Systems, SpringerVerlag, New York, 1991. 

14 
R. J. Smith, J. T. Okano, J. S. Kahn, E. N. Bodine and S. Blower, Evolutionary dynamics of complex networks of HIV drugresistant strains: The case of San Francisco, Science, 327 (2010), 697701. 

15 
H. R. Thieme, Persistence under relaxed pointdissipativity with application to an endemic model, SIAM J Math Anal., 24 (1993), 407435. 

16 
Y. Wang, J. Cao, Z. Jin, H. Zhang and G. Sun, Impact of media coverage on epidemic spreading in complex networks, Phys. A., 392 (2013), 58245835. 

17 
L. Wang and G. Z. Dai, Global stability of virus spreading in complex heterogeneous networks, SIAM J. Appl. Math., 68 (2008), 14951502. 

18 
L. Wang and G. Z. Dai, Scalefree Phenomanas of Complex Network, Science Press. Beijing, 2009. 

19 
Y. Wang and Z. Jin, Global analysis of multiple routes of disease transmission on heterogeneous networks, Physica A, 392 (2013), 38693880. 

20 
Y. Wang, Z. Jin, Z. Yang, Z. Zhang, T. Zhou and G. Sun, Global analysis of an SIS model with an infective vector on complex networks, Nonlinear Anal. Real World Appl., 13 (2012), 543557. 

21 
Y. B. Wang, G. X. Xiao and J. Liu, Dynamics of competing ideas in complex social systems, New J. Phys., 14 (2012), 013015. 

22 
Q. C. Wu, X. C. Fu and M. Yang, Epidemic thresholds in a heterogenous population with competing strains, Chin. Phys. B., 20 (2011), 046401. 

23 
Q. Wu, M. Small and H. Liu, Superinfection behaviors on scalefree networks with competing strains, J. Nonlinear Sci., 23 (2013), 113127. 

24 
H. Zhang and X. Fu, Spreading of epidemics on scalefree networks with nonlinear infectivity, Nonlinear Anal., 70 (2009), 32733278. 

25 
J. Zhang, Z. Jin and Y. Chen, Analysis of sexually transmitted disease spreading in heterosexual and homosexual populations, Math. Biosci., 242 (2013), 143152. 

Go to top
