Discrete and Continuous Dynamical Systems - Series A (DCDS-A)

On the symmetry of spatially periodic two-dimensional water waves
Pages: 7057 - 7061, Issue 12, December 2016

doi:10.3934/dcds.2016107      Abstract        References        Full text (255.6K)           Related Articles

Florian Kogelbauer - Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, Vienna, A-1090, Austria (email)

1 D. Clamond, New exact relations for easy recovery of steady wave profiles from bottom Pressure measurements, J. Fluid Mech., 726 (2013), 547-558.       
2 D. Clamond and A. Constantin, Recovery of steady periodic wave profiles from pressure measurements at the bed, J. Fluid Mech., 714 (2013), 463-475.       
3 A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.       
4 A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 2011.       
5 A. Constantin, Estimating wave heights from pressure data at the bed, J. Fluid Mech., 743 (2014), 10pp.       
6 A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity, Duke Math. J., 140 (2007), 591-603.       
7 A. Constantin and J. Escher, Symmetry of steady periodic surface water waves with vorticity, J. Fluid Mech., 498 (2004), 171-181.       
8 M. Ehrnström, H. Holden and X. Raynaud, Symmetric Waves Are Traveling Waves, International Mathematics Research Notices, 2009 (2009), 4578-4596.       
9 R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge Texts in Applied Mathematics, Cambridge, 1997.       
10 F. Kogelbauer, Recovery of the wave profile for irrotational periodic water waves from pressure measurements, Nonl. Anal.: Real World Appl., 22 (2015), 219-224.       
11 F. Kogelbauer, Symmetric irrotational water waves are traveling waves, J. Diff. Eq., 259 (2015), 5271-5275.       
12 S. Lang, Complex Analysis, Graduate Texts in Mathematics, Springer, 2003.
13 B.-V. Matioc, A characterization of the symmetric steady water waves in terms of the underlying flow, Discrete Contin. Dyn. Syst., A 34 (2014), 3125-3133.       
14 H. Okamoto and M. Shoji, The Mathematical Theory of Permanent Progressive Water-waves, World Scientific, 2001.       
15 G. Tulzer, On the symmetry of steady periodic water waves with stagnation points, Comm. Pure Appl. Anal., 11 (2012), 1577-1586.       

Go to top