`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

Stability criteria for multiphase partitioning problems with volume constraints
Pages: 663 - 683, Issue 2, February 2017

doi:10.3934/dcds.2017028      Abstract        References        Full text (554.3K)           Related Articles

N. Alikakos - Department of Mathematics, University of Athens, Panepistemiopolis, 15784 Athens, Greece (email)
A. Faliagas - Department of Mathematics, University of Athens, Panepistemiopolis, 15784 Athens, Greece (email)

1 R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Second edition, Pure and Applied Mathematics, 140, Elsevier/Academic Press, Amsterdam, 2003.       
2 N. D. Alikakos, P. W. Bates, J. W. Cahn, P. C. Fife, G. Fusco and G. B. Tanoglu, Analysis of a corner layer problem in anisotropic interfaces, Discrete Cont. Dyn.-B, 6 (2006), 237-255.       
3 F. J. Jr. Almgren, Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc., 4 (1976), viii+199pp.       
4 P. W. Bates and P. C. Fife, The dynamics of nucleation for the Cahn-Hilliard equation, SIAM J. Appl. Math., 53 (1993), 990-1008.       
5 P. W. Bates and P. C. Fife, Spectral comparison principles for the Cahn-Hilliard and phase-field equations and time scales for coarsening, Physica D, 43 (1990), 335-348.       
6 G. Caginalp and P. C. Fife, Dynamics of layered interfaces arising from phase boundaries, SIAM J. Appl. Math., 48 (1988), 506-518.       
7 R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. I, Interscience Publishers, New York, 1953.       
8 D. Depner and H. Garcke, Linearized stability analysis of surface diffusion for hypersurfaces with triple lines, Hokkaido Math. J. 42 (2013), 11-52.       
9 S.-I. Ei, R. Ikota and M. Mimura, Segregating partition problem in competition-diffusion systems, Interface Free Bound., 1 (1999), 57-80.       
10 P. C. Fife, Dynamics of Internal Layers and Diffusive Interfaces, CBMS-NSF Regional Conference Series in Applied Mathematics, 53, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1988.       
11 P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics 28, Springer-Verlag, Berlin-New York, 1979.       
12 P. C. Fife, A. Liñán and F. Williams (Editors), Dynamical Issues in Combustion Theory, Proceedings of the Workshop held in Minneapolis, Minnesota, November 1989, The IMA Volumes in Mathematics and its Applications, 35, Springer-Verlag, New York, 1991.       
13 H. Garcke, K. Ito and Y. Kohsaka, Linearized stability analysis of stationary solutions for surface diffusion with boundary conditions, SIAM J. Math. Anal., 36 (2005), 1031-1056.       
14 R. Ikota and E. Yanagida, Stability of stationary interfaces of binary-tree type, Calc. Var. PDE 22 (2005), 375-389.       
15 R. Ikota and E. Yanagida, A stability criterion for stationary curves to the curvature-driven motion with a triple junction, Differential Integral Equations, 16 (2003), 707-726.       
16 W. W. Mullins, Two-dimensional motion of idealized grain boundaries, J. Appl. Phys., 27 (1956), 900-904.       
17 J. C. C. Nitsche, Stationary partitioning of convex bodies, Arch. Ration. Mech. An., 89 (1985), 1-19.       
18 J. C. C. Nitsche, Corrigendum to: Stationary partitioning of convex bodies, Arch. Ration. Mech. An. 95 (1986), p389.       
19 H.-K. Rajni, Aqueous two-phase systems, Mol. Biotechnol, 19 (2001), 269-277.
20 L. Simon, Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, 1983.       
21 P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces, J. Reine Angew. Math., 503 (1998), 63-85.       
22 E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, 1971.       
23 M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Fourth Edition, Springer, 2008.       
24 B. White, Existence of least-energy configurations of immiscible fluids, J. Geom. Anal. 6 (1996), 151-161.       
25 J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1992.

Go to top