Discrete and Continuous Dynamical Systems - Series S (DCDS-S)

Carbon-nanotube geometries: Analytical and numerical results
Pages: 141 - 160, Issue 1, February 2017

doi:10.3934/dcdss.2017008      Abstract        References        Full text (898.3K)           Related Articles

Edoardo Mainini - Dipartimento di Ingegneria meccanica, energetica, gestionale e dei trasporti (DIME), Università degli Studi di Genova, P.le Kennedy 1, 16129 Genova, Italy (email)
Hideki Murakawa - Faculty of Mathematics, Kyushu University, 744 Motooka, Nishiku, Fukuoka, 819-0395, Japan (email)
Paolo Piovano - Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria (email)
Ulisse Stefanelli - Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria (email)

1 P. M. Agrawal, B. S. Sudalayandi, L. M. Raff and R. Komandur, Molecular dynamics (MD) simulations of the dependence of C-C bond lengths and bond angles on the tensile strain in single-wall carbon nanotubes (SWCNT), Comp. Mat. Sci., 41 (2008), 450-456.
2 M. E. Budyka, T. S. Zyubina, A. G. Ryabenko, S. H. Lin and A. M. Mebel, Bond lengths and diameters of armchair single-walled carbon nanotubes, Chem. Phys. Lett., 407 (2005), 266-271.
3 B. J. Cox and J. M. Hill, Exact and approximate geometric parameters for carbon nanotubes incorporating curvature, Carbon, 45 (2007), 1453-1462.
4 M. S. Dresselhaus, G. Dresselhaus and R. Saito, Carbon fibers based on $C_{60}$ ad their symmetry, Phys. Rev. B, 45 (1992), 6234-6242.
5 M. S. Dresselhaus, G. Dresselhaus and R. Saito, Physics of carbon nanotubes, Carbon Nanotubes, (1996), 27-35.
6 W. E and D. Li, On the crystallization of 2D hexagonal lattices, Comm. Math. Phys., 286 (2009), 1099-1140.       
7 R. D. James, Objective structures, J. Mech. Phys. Solids, 54 (2006), 2354-2390.       
8 H. Jiang, P. Zhang, B. Liu, Y. Huans, P. H. Geubelle, H. Gao and K. C. Hwang, The effect of nanotube radius on the constitutive model for carbon nanotubes, Comp. Mat. Sci., 28 (2003), 429-442.
9 V. K. Jindal and A. N. Imtani, Bond lengths of armchair single-walled carbon nanotubes and their pressure dependence, Comp. Mat. Sci., 44 (2008), 156-162.
10 R. A. Jishi, M. S. Dresselhaus and G. Dresselhaus, Symmetry properties and chiral carbon nanotubes, Phys. Rev. B, 47 (1993), 166671-166674.
11 K. Kanamits and S. Saito, Geometries, electronic properties, and energetics of isolated single-walled carbon nanotubes, J. Phys. Soc. Japan, 71 (2002), 483-486.
12 A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos and M. M. J. Treacy, Young's modulus of single-walled nanotubes, Phys. Rev. B, 58 (1998), 14013-14019.
13 J. Kurti, V. Zolyomi, M. Kertesz and G. Sun, The geometry and the radial breathing model of carbon nanotubes: Beyond the ideal behaviour, New J. Phys., 5 (2003), 1-21.
14 R. K. F. Lee, B. J. Cox and J. M. Hill, General rolled-up and polyhedral models for carbon nanotubes, Fullerenes, Nanotubes and Carbon Nanostructures, 19 (2011), 726-748.
15 E. Mainini and U. Stefanelli, Crystallization in carbon nanostructures, Comm. Math. Phys., 328 (2014), 545-571.       
16 E. Mainini, H. Murakawa, P. Piovano and U. Stefanelli, Carbon-nanotube Geometries as Optimal Configurations, preprint, 2016.
17 L. Shen and J. Li, Transversely isotropic elastic properties of single-walled carbon nanotubes, Phys. Rev. B, 69 (2004), 045414, Erratum Phys. Rev. B 81 (2010), 119902.
18 L. Shen and J. Li, Equilibrium structure and strain energy of single-walled carbon nanotubes, Phys. Rev. B, 71 (2005), 165427.
19 F. H. Stillinger and T. A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B, 8 (1985), 5262-5271.
20 J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B, 37 (1988), 6991-7000.
21 M. M. J. Treacy, T. W. Ebbesen and J. M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, 381 (1996), 678-680.
22 M.-F. Yu, B. S. Files, S. Arepalli and R. S. Ruoff, Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties, Phys. Rev. Lett., 84 (2000), 5552-5555.
23 T. Zhang, Z. S. Yuan and L. H. Tan, Exact geometric relationships, symmetry breaking and structural stability for single-walled carbon nanotubes, Nano-Micro Lett., 3 (2011), 28-235.
24 X. Zhao, Y. Liu, S. Inoue, R. O. Jones and Y. Ando, Smallest carbon nanotibe is $3$Ã… in diameter, Phys. Rev. Lett., 92 (2004), 125502.

Go to top