Carbonnanotube
geometries: Analytical and numerical results
Pages: 141  160,
Issue 1,
February
2017
doi:10.3934/dcdss.2017008 Abstract
References
Full text (898.3K)
Related Articles
Edoardo Mainini  Dipartimento di Ingegneria meccanica, energetica, gestionale e dei trasporti (DIME), UniversitÃ degli Studi di Genova, P.le Kennedy 1, 16129 Genova, Italy (email)
Hideki Murakawa  Faculty of Mathematics, Kyushu University, 744 Motooka, Nishiku, Fukuoka, 8190395, Japan (email)
Paolo Piovano  Faculty of Mathematics, University of Vienna, OskarMorgensternPlatz 1, A1090 Vienna, Austria (email)
Ulisse Stefanelli  Faculty of Mathematics, University of Vienna, OskarMorgensternPlatz 1, A1090 Vienna, Austria (email)
1 
P. M. Agrawal, B. S. Sudalayandi, L. M. Raff and R. Komandur, Molecular dynamics (MD) simulations of the dependence of CC bond lengths and bond angles on the tensile strain in singlewall carbon nanotubes (SWCNT), Comp. Mat. Sci., 41 (2008), 450456. 

2 
M. E. Budyka, T. S. Zyubina, A. G. Ryabenko, S. H. Lin and A. M. Mebel, Bond lengths and diameters of armchair singlewalled carbon nanotubes, Chem. Phys. Lett., 407 (2005), 266271. 

3 
B. J. Cox and J. M. Hill, Exact and approximate geometric parameters for carbon nanotubes incorporating curvature, Carbon, 45 (2007), 14531462. 

4 
M. S. Dresselhaus, G. Dresselhaus and R. Saito, Carbon fibers based on $C_{60}$ ad their symmetry, Phys. Rev. B, 45 (1992), 62346242. 

5 
M. S. Dresselhaus, G. Dresselhaus and R. Saito, Physics of carbon nanotubes, Carbon Nanotubes, (1996), 2735. 

6 
W. E and D. Li, On the crystallization of 2D hexagonal lattices, Comm. Math. Phys., 286 (2009), 10991140. 

7 
R. D. James, Objective structures, J. Mech. Phys. Solids, 54 (2006), 23542390. 

8 
H. Jiang, P. Zhang, B. Liu, Y. Huans, P. H. Geubelle, H. Gao and K. C. Hwang, The effect of nanotube radius on the constitutive model for carbon nanotubes, Comp. Mat. Sci., 28 (2003), 429442. 

9 
V. K. Jindal and A. N. Imtani, Bond lengths of armchair singlewalled carbon nanotubes and their pressure dependence, Comp. Mat. Sci., 44 (2008), 156162. 

10 
R. A. Jishi, M. S. Dresselhaus and G. Dresselhaus, Symmetry properties and chiral carbon nanotubes, Phys. Rev. B, 47 (1993), 166671166674. 

11 
K. Kanamits and S. Saito, Geometries, electronic properties, and energetics of isolated singlewalled carbon nanotubes, J. Phys. Soc. Japan, 71 (2002), 483486. 

12 
A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos and M. M. J. Treacy, Young's modulus of singlewalled nanotubes, Phys. Rev. B, 58 (1998), 1401314019. 

13 
J. Kurti, V. Zolyomi, M. Kertesz and G. Sun, The geometry and the radial breathing model of carbon nanotubes: Beyond the ideal behaviour, New J. Phys., 5 (2003), 121. 

14 
R. K. F. Lee, B. J. Cox and J. M. Hill, General rolledup and polyhedral models for carbon nanotubes, Fullerenes, Nanotubes and Carbon Nanostructures, 19 (2011), 726748. 

15 
E. Mainini and U. Stefanelli, Crystallization in carbon nanostructures, Comm. Math. Phys., 328 (2014), 545571. 

16 
E. Mainini, H. Murakawa, P. Piovano and U. Stefanelli, Carbonnanotube Geometries as Optimal Configurations, preprint, 2016. 

17 
L. Shen and J. Li, Transversely isotropic elastic properties of singlewalled carbon nanotubes, Phys. Rev. B, 69 (2004), 045414, Erratum Phys. Rev. B 81 (2010), 119902. 

18 
L. Shen and J. Li, Equilibrium structure and strain energy of singlewalled carbon nanotubes, Phys. Rev. B, 71 (2005), 165427. 

19 
F. H. Stillinger and T. A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B, 8 (1985), 52625271. 

20 
J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B, 37 (1988), 69917000. 

21 
M. M. J. Treacy, T. W. Ebbesen and J. M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, 381 (1996), 678680. 

22 
M.F. Yu, B. S. Files, S. Arepalli and R. S. Ruoff, Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties, Phys. Rev. Lett., 84 (2000), 55525555. 

23 
T. Zhang, Z. S. Yuan and L. H. Tan, Exact geometric relationships, symmetry breaking and structural stability for singlewalled carbon nanotubes, NanoMicro Lett., 3 (2011), 28235. 

24 
X. Zhao, Y. Liu, S. Inoue, R. O. Jones and Y. Ando, Smallest carbon nanotibe is $3$Ã… in diameter, Phys. Rev. Lett., 92 (2004), 125502. 

Go to top
