`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

Degenerate with respect to parameters fold-Hopf bifurcations
Pages: 2115 - 2140, Issue 4, April 2017

doi:10.3934/dcds.2017091      Abstract        References        Full text (813.0K)                  Related Articles

Gheorghe Tigan - Department of Mathematics, Politehnica University of Timisoara, Pta Victoriei, No. 2, 300006, Timisoara, Timis, Romania (email)

1 G. Chen and T. Ueta, Yet another chaotic attractor, International Journal of Bifurcation and Chaos, 9 (1999), 1465-1466.       
2 J.D. Crawford and E. Knobloch, Classification and unfolding of degenerate Hopf bifurcations with O(2) symmetry: No distinguished parameter, Physica D: Nonlinear Phenomena, 31 (1988), 1-48.       
3 F. Dumortier, S. Ibanez, H. Kokubu and C. Simo, About the unfolding of a Hopf-zero singularity, Discrete and Continuous Dynamical Systems - Series A, 33 (2013), 4435-4471.       
4 I. Garcia and C. Valls, The three-dimensional center problem for the zero-Hopf singularity, Discrete and Continuous Dynamical Systems - Series A, 36 (2016), 2027-2046.       
5 X. He, C. Li and Y. Shu, Triple-zero bifurcation in van der Pol's oscillator with delayed feedback, Communications in Nonlinear Science and Numerical Simulation, 17 (2012), 5229-5239.       
6 J. Huang and Y. Zhao, Bifurcation of isolated closed orbits from degenerated singularity, Discrete and Continuous Dynamical Systems - Series A, 33 (2013), 2861-2883.       
7 W. Jiang and B. Niu, On the coexistence of periodic or quasi-periodic oscillations near a Hopf-pitchfork bifurcation in NFDE, Communications in Nonlinear Science and Numerical Simulation, 18 (2013), 464-477.       
8 Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, 1995.       
9 J. S. W. Lamb, M.-A. Teixeira and K. N. Webster, Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in $\mathbbR^{3}$, Journal of Differential Equations, 219 (2005), 78-115.       
10 C. Lazureanu and T. Binzar, On the symmetries of a Rikitake type system, C. R. Acad. Sci. Paris, Ser. I, 350 (2012), 529-533.       
11 C. Lazureanu and T. Binzar, On a new chaotic system}, Mathematical Methods in the Applied Sciences, 38 (2015), 1631-1641.       
12 J. Lu and G. Chen, A new chaotic attractor coined, International Journal of Bifurcation and Chaos, 12 (2012), 659-661.       
13 M. Perez-Molina and M. F. Perez-Polo, Fold-Hopf bifurcation, steady state, self-oscillating and chaotic behavior in an electromechanical transducer with nonlinear control, Communications in Nonlinear Science and Numerical Simulation, 17 (2012), 5172-5188.       
14 E. Ponce, J. Ros and E. Vela, Unfolding the fold-Hopf bifurcation in piecewise linear continuous differential systems with symmetry, Physica D: Nonlinear Phenomena, 250 (2013), 34-46.       
15 R. Qesmi, M. Ait Babram and M. L. Hbid, Center manifolds and normal forms for a class of retarded functional differential equations with parameter associated with Fold-Hopf singularity, Applied Mathematics and Computation, 181 (2006), 220-246.       
16 J. C. Sprott, Some simple chaotic flows, Physical Review E, 50 (1994), 647-650.       
17 G. Tigan, Analysis of a dynamical system derived from the Lorenz system, Scientific Bulletin of the Politehnica University of Timisoara, 50 (2005), 61-72.       
18 G. Tigan and D. Opris, Analysis of a 3D dynamical system, Chaos, Solitons and Fractals, 36 (2008), 1315-1319.       
19 G. Tigan, Analysis of degenerate fold-Hopf bifurcation in a three-dimensional differential system, Qualitative Theory of Dynamical Systems, to appear.
20 P. D. Woods and A. R. Champneys, Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian-Hopf bifurcation, Physica D: Nonlinear Phenomena, 129 (1999), 147-170.       

Go to top