Seasonal forcing and exponential threshold incidence in cholera dynamics
Pages: 2261  2290,
Issue 6,
August
2017
doi:10.3934/dcdsb.2017095 Abstract
References
Full text (878.3K)
Related Articles
Jinhuo Luo  College of Information Technology, Shanghai Ocean University, Shanghai 201306, China (email)
Jin Wang  Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, United States (email)
Hao Wang  Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada (email)
1 
J. R. Andrews and S. Basu, Transmission dynamics and control of cholera in Haiti: An epidemic model, Lancet, 377 (2011), 12481255. 

2 
E. Bertuzzo, L. Mari, L. Righetto, M. Gatto, R. Casagrandi, M. Blokesch, I. RodriguezIturbe and A. Rinaldo, Prediction of the spatial evolution and effects of control measures for the unfolding Haiti cholera outbreak, Geophys. Res. Lett., 38 (2011), L06403. 

3 
D. L. Chao, M. E. Halloran and I. M. Longini, Vaccination strategies for epidemic cholera in Haiti with implications for the developing world, Proc. Natl. Acad. Sci., 108 (2011), 70817085. 

4 
C. T. Codeço, Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir, BMC Infect. Dis., 1 (2001), p1. 

5 
M. C. Eisenberga, G. Kujbidad, A. R. Tuited, D. N. Fismand and J. H. Tiena, Examining rainfall and cholera dynamics in Haiti using statistical and dynamic modeling approaches, Epidemics, 5 (2013), 197207. 

6 
S. M. Faruque, I. B. Naser, M. J. Islam, A. S. G. Faruque, A. N. Ghosh, G. B. Nair, D. A. Sack and J. J. Mekalanos, Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages, Proc. Nat. Acad. Sci., 102 (2004), 17021707. 

7 
J. K. Hale, Ordinary Differential Equations, Pure and Applied Mathematics, Vol. XXI, WileyInterscience, New York, 1969. 

8 
D. M. Hartley, J. G. Morris and D. L. Smith, Hyperinfectivity: A critical element in the ability of V. cholerae to cause epidemics?, PLoS Medicine, 3 (2006), e7. 

9 
M. A. Jensen, S. M. Faruque, J. J. Mekalanos and B. R. levin, Modeling the role of bacteriophage in the control of cholera outbreaks, PNAS, 103 (2006), 46524657. 

10 
R. I. Joh, H. Wang, H. Weiss and J. S. Weitz, Dynamics of indirectly transmitted infectious diseases with immunological threshold, Bull. Math. Bio., 71 (2009), 845862. 

11 
J. D. Kong, W. Davis, X. Li and H. Wang, Stability and sensitivity analysis of the iSIR model for indirectly transmitted infectious dieases with immunological threshold, SIAM J. Appl. Math., 74 (2014), 14181441. 

12 
S. Liao and J. Wang, Stability analysis and application of a mathematical cholera model, Math. Biosci. and Eng., 8 (2011), 733752. 

13 
Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D. L. Smith and J. G. Morris Jr., Estimating the reproductive numbers for the 20082009 cholera outbreaks in Zimbabwe, Proc. Nat. Acad. Sci., 108 (2011), 87678772. 

14 
E. J. Nelson, J. B. Harris, J. G. Morris, S. B. Calderwood and A. Camilli, Cholera transmission: The host, pathogen and bacteriophage dynamics, Nature Reviews: Microbiology, 7 (2009), 693702. 

15 
L. Righetto, E. Bertuzzo, L. Mari, E. Schild, R. Casagrandi, M. Gatto, I. RodriguezIturbe and A. Rinaldo, Rainfall mediations in the spreading of epidemic cholera, Advances in Water Resources, 60 (2013), 3446. 

16 
L. Righetto, R. Casagrandi, E. Bertuzzo, L. Mari, M. Gatto, I. RodriguezIturbe and A. Rinaldo, The role of aquatic reservoir fluctuations in longterm cholera patterns, Epidemics, 4 (2012), 3342. 

17 
F. L. Thompson, B. Austin and J. Swings, The Biology of Vibrios, ASM Press, Washington, D.C., 2006. 

18 
J. P. Tian and J. Wang, Global stability for cholera epidemic models, Math. Biosci., 232 (2011), 3141. 

19 
J. H. Tien and D. J. D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull. Math. Bio., 72 (2010), 15021533. 

20 
A. L. Tuite, J. Tien, M. Eisenberg, D. J. D. Earn, J. Ma and D. N. Fisman, Cholera epidemic in Haiti, 2010: Using a transmission model to explain spatial spread of disease and identify optimal control interventions, Ann. Intern. Med., 154 (2011), 593601. 

21 
F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Second Edition, Springer, Berlin, 1996. 

22 
J. Wang and S. Liao, A generalized cholera model and epidemicendemic analysis, J. Biol. Dyn., 6 (2012), 568589. 

23 
T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutins, Appl. Math. Science, Vol.14, SpringerVerlag, 1975. 

24 
World Health Organization (WHO) web page: http://www.who.org. 

Go to top
