Communications on Pure and Applied Analysis (CPAA)

Traveling waves in a three species competition-cooperation system
Pages: 1103 - 1119, Issue 4, July 2017

doi:10.3934/cpaa.2017053      Abstract        References        Full text (410.9K)           Related Articles

Xiaojie Hou - Department of Mathematics and Statistics, University of North Carolina at Wilmington, Wilmington, NC 28403, United States (email)
Yi Li - Department of Mathematics, California State University Northridge, CA 91330, United States (email)

1 P. Ashwin, M. V. Bartuccelli, T. J. Bridges and S. A. Gourley, Travelling fronts for the KPP equation with spatio-temporal delay, Zeitschrift fur Angewandte Mathematik und Physik, 53 (2002), 103-122.       
2 H. Berestycki and L. Nirenberg, Travelling fronts in cylinders, Ann. Inst. H. Poincare, Anal. non Lineaire, 9 (1992), 497-572.       
3 A. Boumenir and V. Nguyen, Perron theorem in monotone iteration method for traveling waves in delayed reaction-diffusion equations, J. Diff. Eqs., 244 (2008), 1551-1570.       
4 E. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.       
5 N. Fei and J. Carr, Existence of travelling waves with their minimal speed for a diffusing Lotka-Volterra system, Nonlinear Analysis: Real World Applications, 4 (2003), 503-524.       
6 X. Hou and W. Feng, Traveling waves and their stability in a coupled reaction diffusion system, Communications on Pure and Applied Analysis, 10 (2011), 141-160.       
7 Y. Hosono, Travelling waves for a diffusive Lotka-Volterra competition model I: Singular Perturbations, Discrete and Continuous Dynamical Systems-Series B, 3 (2003), 79-95.       
8 W. Huang, Problem on minimum wave speed for a Lotka-Volterra reaction-diffusion competition model, J. Dynam. Differential Equations, 22 (2010), 285-297.       
9 L. Hung, Traveling wave solutions of competitive-cooperative Lotka-Volterra systems of three species, Nonlinear Analysis: Real World Applications, 12 (2011), 3691-3700.       
10 H. Ikeda, Global bifurcation phenomena of standing pulse solutions for three-component systems with competition and diffusion, Hiroshima Math. J., 32 (2002), 87-124.       
11 J. I. Kanel, On the wave front of a competition-diffusion system in popalation dynamics, Nonlinear Analysis, 65 (2006), 301-320.       
12 J. I. Kanel and L. Zhou, Existence of wave front solutions and estimates of wave speed for a competition-diffusion system, Nonlinear Analysis, Theory, Methods & Applications, 27 (1996), 579-587.       
13 Y. Kan-on, Note on propagation speed of travelling waves for a weakly coupled parabolic system, Nonlinear Analysis, 44 (2001), 239-246.       
14 Y. Kan-on, Fisher wave fronts for the lotka-volterra competition model with diffusion, Nonlinear Analysis, Theory, methods & Applications, 28 (1997), 145-164.       
15 A. W. Leung, X. Hou and W. Feng, Traveling wave solutions for Lotka-Volterra system re-visited, Discrete and Continuous Dynamical Systems - Series B, 15 (2011), 171-196.       
16 B. Li, H. Weinberger and M. Lewis, Spreading speeds as slowestwave speeds for cooperative systems, Math. Biosci., 196 (2005), 82-98.       
17 P. Miller, Stability of non-monotone waves in a three-species reaction-diffusion model, Proceedings of the Royal Society of Edinburgh Section A Mathematics, Cambridge University Press 129 (1999), 125-152.       
18 D. Sattinger, On the stability of traveling waves, Adv. in Math., 22 (1976), 312-355.       
19 I. Volpert, V. Volpert and V. Volpert, Traveling Wave Solutions of Parabolic Systems, Transl. Math. Monogr., vol 140, Amer. Math. Soc., Providence, RI. 1994.       
20 J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dynamics and Diff. Eq., 13 (2001), 651-687. and Erratum to traveling wave fronts of reaction-diffusion systems with delay, J. Dynamics and Diff. Eq., 2 (2008), 531-533.       

Go to top