A competition model with dynamically allocated toxin production in the unstirred chemostat
Pages: 1373  1404,
Issue 4,
July
2017
doi:10.3934/cpaa.2017066 Abstract
References
Full text (1600.2K)
Related Articles
Hua Nie  College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China (email)
SzeBi Hsu  Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan (email)
Jianhua Wu  College of Mathematics and Information Science, Shaanxi Normal University, Xi’an, Shaanxi 710119, China (email)
1 
S. Abbas, M. Banerjee and N. Hungerbuhler, Existence, uniqueness and stability analysis of allelopathic stimulatory phytoplankton model, J. Math. Anal. Appl., 367 (2010), 249259. 

2 
M. An, D. L. Liu, I. R. Johnson and J. V. Lovett, Mathematical modelling of allelopathy: II. The dynamics of allelochemicals from living plants in the environment, Ecol. Modell., 161 (2003), 5366. 

3 
B. L. Bassler, How bacteria talk to each other: regulation of gene expression by quorum sensing, Curr. Opinion Microbiol., 2 (1999), 582587. 

4 
F. Belgacem, Elliptic Boundary Value Problems with Indefinite Weights: Variational Formulations of the Principal Eigenvalue and Applications, AddisonWesley Longman, Harlow, UK, 1997. 

5 
J. P. Braselton and P. Waltman, A competition model with dynamically allocated inhibitor production, Math. Biosci., 173 (2001), 5584. 

6 
M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321340. 

7 
M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearixed stability, Arch. Rational Mech. Anal., 52 (1973), 161180. 

8 
E. N. Dancer, On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl., 91 (1983), 131151. 

9 
E. N. Dancer, On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc., 284 (1984), 729743. 

10 
E. N. Dancer and Y. Du, Positive solutions for a threespecies competition system with diffusion, Part I, General existence results, Nonlinear Anal., 24 (1995), 337357. 

11 
P. Fergola, E. Beretta and M. Cerasuolo, Some new results on an allelopathic competition model with quorum sensing and delayed toxicant production, Nonliear Anal. Real World Appl., 7 (2006), 10811095. 

12 
P. Fergola, M. Cerasuolo, A. Pollio and G. Pinto, Allelopathy and competition between Chlorella vulgaris and Pseudokirchneriella subcapitata: Experiments and mathematical model, Ecol. Modell., 208 (2007), 205214. 

13 
P. Fergola, J. Li and Z. Ma, On the dynamical behavior of some algal allelopathic competitions in chemostatlike environment, Ric. Mat., 60 (2011), 313332. 

14 
J. P. Grover, Resource Competition, Chapman and Hall, London, 1997. 

15 
S. B. Hsu and P. Waltman, Competition in the chemostat when one competitor produces a toxin, Japan J. Indust. Appl. Math., 15 (1998), 471490. 

16 
F. D. Hulot, P. J. Morin and M. Loreau, Interactions between algae and the microbial loop in experimental microcosms, Oikos, 95 (2001), 231238. 

17 
J. LópezGómez and R. Parda, Existence and uniqueness of coexistence states for the predatorprey model with diffusion: The scalar case, Differential Integral Equations, 6 (1993), 10251031. 

18 
H. Nie, N. Liu and J. H. Wu, Coexistence solutions and their stability of an unstirred chemostat model with toxins, Nonlinear Analysis: Real World Appl., 20 (2014), 3651. 

19 
H. Nie and J. H. Wu, A system of reactiondiffusion equations in the unstirred chemostat with an inhibitor, International J. Bifurcation and Chaos, 16 (2006), 9891009. 

20 
H. Nie and J. H. Wu, Asymptotic behavior on a competition model arising from an unstirred chemostat, Acta Mathematicae Applicatae Sinica, English Series, 22 (2006), 257264. 

21 
H. Nie and J. H. Wu, The effect of toxins on the plasmidbearing and plasmidfree model in the unstirred chemostat, Discrete Contin. Dyn. Syst., 32 (2012), 303329. 

22 
H. Nie and J. H. Wu, Multiple coexistence solutions to the unstirred chemostat model with plasmid and toxin, European J. Appl. Math., 25 (2014), 481510. 

23 
H. Nie and J. H. Wu, Uniqueness and stability for coexistence solutions of the unstirred chemostat model, Appl. Anal., 89 (2010), 11411159. 

24 
G. Pinto, A. Pollio, M. D. Greca and R. Ligrone, Linoleic acida potential allelochemical released by Eichhornia crassipes (Mart.) Solms in a continuous trapping apparatus, J. Allelopathy, 2 (1995), 169178. 

25 
E. L. Rice, Allelopathy, Academic Press, Orlando, FL, 2nd ed. 1984. 

26 
J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246 (2009), 27882812. 

27 
H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge University Press, Cambridge, 1995. 

28 
T. F. Thingstad and B. Pengerud, Fate and effect of allochthonus organic material in aquatic microbial ecosystems: an analysis based on chemostat theory, Mar. Ecol. Prog. Ser., 21 (1985), 4762. 

29 
M. X. Wang, Nonlinear Elliptic Equations, Science Press, Beijing, 2010 (in Chinese). 

30 
J. H. Wu, H. Nie and G. S. K. Wolkowicz, A mathematical model of competition for two essential resources in the unstirred chemostat, SIAM J. Appl. Math., 65 (2004), 209229. 

31 
J. H. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmidbearing and plasmidfree model in the unstirred chemostat, SIAM J. Math. Anal., 38 (2007), 18601885. 

32 
J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat, Nonlinear Anal., 39 (2000), 817835. 

Go to top
