`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

Conjugacies of model sets
Pages: 3805 - 3830, Issue 7, July 2017

doi:10.3934/dcds.2017161      Abstract        References        Full text (523.6K)           Related Articles

Johannes Kellendonk - Université de Lyon, Université Claude Bernard Lyon 1, Institute Camille Jordan, CNRS UMR 5208, 69622 Villeurbanne, France (email)
Lorenzo Sadun - Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, United States (email)

1 J. E. Anderson and I. F. Putnam, Topological invariants for substitution tilings and their associated $C^*$-algebras, Ergodic Th. & Dynam. Syst., 18 (1998), 509-537.       
2 J. B. Aujogue, M. Barge, J. Kellendonk and D. Lenz. Equicontinuous factors, proximality and Ellis semigroup for Delone sets, in Mathematics of Aperiodic Order, Springer Basel, 309 (2015), 137-194.       
3 M. Baake and U. Grimm, Aperiodic Order: Volume 1, A Mathematical Invitation (Encyclopedia of Mathematics and its Applications), Cambridge University Press 2013.       
4 M. Baake and D. Lenz, Deformation of Delone dynamical systems and pure point diffraction, Journal of Fourier Analysis and Applications, 11 (2005), 125-150.       
5 M. Baake and R. V. Moody, Weighted Dirac combs with pure point diffraction, J. Reine Angew. Math. (Crelle), 573 (2004), 61-94.       
6 V. Baker, M. Barge and J. Kwapisz, Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to beta-shifts, Annales-Institut Fourier, 56 (2006), 2213-2248.       
7 M. Barge and J. Kellendonk, Proximality and pure point spectrum for tiling dynamical systems, Michigan Math. J., 62 (2013), 793-822.       
8 M. Barge, J. Kellendonk and S. Schmieding, Maximal equicontinuous factors and cohomology for tiling spaces, Fundamenta Mathematicae, 218 (2012), 243-268.       
9 M. Barge, S. Štimac and R. F. Williams, Pure discrete spectrum in substitution tiling spaces, Disc. & Cont. Dynam. Sys. A, 33 (2013), 579-597.       
10 G. Bernuau and M. Duneau, Fourier analysis of deformed model sets, Directions in Mathematical Quasicrystals, CRM Monograph Series, AMS, Providence, RI, 13 (2000), 43-60.       
11 H. Boulmezaoud, Cohomologie des pavages et leurs déformations, PhD-thesis, Lyon, 2009.
12 H. Boulmezaoud and J. Kellendonk. Comparing different versions of tiling cohomology, Topology and its Applications, 157 (2010), 2225-2239.       
13 A. Clark and L. Sadun, When shape matters: Deformations of tiling spaces, Ergod. Th. & Dynam. Systems, 26 (2006), 69-86.       
14 J. Kellendonk, Pattern-equivariant functions and cohomology, J. Phys A., 36 (2003), 5765-5772.       
15 J. Kellendonk, Pattern equivariant functions, deformations and equivalence of tiling spaces, Ergodic Theory Dynam. Systems, 28 (2008), 1153-1176.       
16 J. Kellendonk and I. F. Putnam, The Ruelle-Sullivan map for actions of $\mathbbR^n$, Math. Ann., 334 (2006), 693-711.       
17 J. Kellendonk and L. Sadun, Meyer sets, topological eigenvalues, and Cantor fiber bundles, J. London Math. Soc, 89 (2014), 114-130.       
18 J.-Y. Lee, Substitution Delone sets with pure point spectrum are inter-model sets, J. Geom. Phys., 57 (2007), 2263-2285.       
19 D. Rudolph, Rectangular tilings of $\mathbbR^n$ and free $\mathbbR^n$-actions, in Dynamical systems, Springer Berlin Heidelberg, 1342 (1988), 653-688.       
20 L. Sadun, Pattern-equivariant cohomology with integer coefficients, Ergodic Theory and Dynamical Systems, 27 (2007), 1991-1998.       
21 L. Sadun, Tiling spaces are inverse limits, J. Math. Physics, 44 (2003), 5410-5414.       
22 M. Schlottmann, Generalized model sets and dynamical systems, Directions in Mathematical Quasicrystals, CRM Monograph Series, AMS, Providence, RI, 13 (2000), 143-159.       
23 B. Sing, Pisot Substitutions and Beyond, PhD thesis, Universität Bielefeld, 2007.

Go to top