A twophase flow model with delays
Pages: 3273  3294,
Issue 9,
November
2017
doi:10.3934/dcdsb.2017137 Abstract
References
Full text (438.7K)
Related Articles
Theodore Tachim Medjo  Department of Mathematics, Florida International University, DM413B, University Park, Miami, Florida 33199, United States (email)
1 
T. Blesgen, A generalization of the NavierStokes equation to twophase flow, Pysica D (Applied Physics), 32 (1999), 11191123. 

2 
G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205245. 

3 
T. Caraballo and X. Han, A survey on NavierStokes models with delays: Existence, uniqueness and asymptotic behavior of solutions, Discrete Contin. Dyn. Syst. Ser. S, 8 (2015), 10791101. 

4 
T. Caraballo, A. M. MárquezDurán and J. Real, Pullback and forward attractors for a 3D LANS$\alpha$ model with delay, Discrete Contin. Dyn. Syst., 15 (2006), 559578. 

5 
T. Caraballo and J. Real, NavierStokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 24412453. 

6 
T. Caraballo and J. Real, Asymptotic behavior of twodimensional NavierStokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 31813194. 

7 
T. Caraballo and J. Real, Attractors for 2D NavierStokes models with delays, J. Differential Equations, 205 (2004), 271297. 

8 
R. Datko, Representation of solutions and stability of linear differentialdifference equations in a Banach space, J. Differential Equations, 29 (1978), 105166. 

9 
E. Feireisl, H. Petzeltová, E. Rocca and G. Schimperna, Analysis of a phasefield model for twophase compressible fluids, Math. Models Methods Appl. Sci., 20 (2010), 11291160. 

10 
C. G. Gal and M. Grasselli, Asymptotic behavior of a CahnHilliardNavierStokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 401436. 

11 
C. G. Gal and M. Grasselli, Longtime behavior for a model of homogeneous incompressible twophase flows, Discrete Contin. Dyn. Syst., 28 (2010), 139. 

12 
C. G. Gal and M. Grasselli, Trajectory attractors for binary fluid mixtures in 3D, Chin. Ann. Math. Ser. B, 31 (2010), 655678. 

13 
P.C. Hohenberg and B. I. Halperin, Theory of dynamical critical phenomena, Rev. Modern Phys., 49 (1977), 435479. 

14 
T. Tachim Medjo, Pullback attractors for a nonautonomous homogeneous twophase flow model, J. Diff. Equa., 253 (2012), 17791806. 

15 
H. Mei, G. Yin and F. Wu, Properties of stochastic integrodifferential equations with infinite delay: regularity, ergodicity, weak sense FokkerPlanck equations, Stochastic Process. Appl., 126 (2016), 31023123. 

16 
S. A. Messaoudi, A. Fareh and N. Doudi, Well posedness and exponential stability in a wave equation with a strong damping and a strong delay, J. Math. Phys., 57 (2016), 111501, 13 pp. 

17 
C. Niche and G. Planas, Existence and decay of solutions in full space to NavierStokes equations with delays, Nonlinear Anal., 74 (2011), 244256. 

18 
A. Onuki, Phase transition of fluids in shear flow, J. Phys. Condens. Matter, 9 (1997), 61196157. 

19 
T. tachim Medjo, Attractors for a twophase flow model with delays, Differential Integral Equations, 29 (2016), 10711092. 

20 
T. Taniguchi, The exponential behavior of NavierStokes equations with time delay external force, Discrete Contin. Dyn. Syst., 12 (2005), 9971018. 

21 
R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, volume 68. Appl. Math. Sci., SpringerVerlag, New York, second edition, 1997. 

22 
X. S. Wang and J. Wu, Seasonal migration dynamics: periodicity, transition delay and finitedimensional reduction, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 468 (2012), 634650. 

Go to top
