Discrete and Continuous Dynamical Systems - Series B (DCDS-B)

On a delay differential equation arising from a car-following model: Wavefront solutions with constant-speed and their stability
Pages: 3317 - 3340, Issue 9, November 2017

doi:10.3934/dcdsb.2017139      Abstract        References        Full text (2326.1K)           Related Articles

Eugen Stumpf - Department of Mathematics, University of Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany (email)

1 M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Structure stability of congestion in traffic dynamics, Japan Journal of Industrial and Applied Mathematics, 11 (1994), 203-223.       
2 M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Physical Review E, 51 (1995), 1035-1042.
3 O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations. Functional, Complex, and Nonlinear Analysis, Applied Mathematical Sciences, 110, Springer-Verlag, New York, 1995.       
4 I. Gasser and E. Stumpf, work in progress.
5 J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993.       
6 T. Insperger and G. Stépán, Semi-discretization for Time-Delay Systems. Stability and Engineering Applications, Applied Mathematical Sciences, 178, Springer-Verlag, New York, 2011.       
7 MATLAB R2016a, The MathWorks Inc., Natick, Massachusetts, 2016.
8 E. Stumpf, work in progress.

Go to top