`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

Normalization in Banach scale Lie algebras via mould calculus and applications
Pages: 4461 - 4487, Issue 8, August 2017

doi:10.3934/dcds.2017191      Abstract        References        Full text (588.4K)           Related Articles

Thierry Paul - CMLS, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau Cedex, France (email)
David Sauzin - CNRS UMR 8028 - IMCCE, Observatoire de Paris, 75014 Paris, France (email)

1 V. Arnol'd, Méthodes mathématiques de la mécanique classique, Mir, Moscou, 1976.       
2 M. Bailey, Local classification of generalized complex structures, J. Differential Geom., 95 (2013), 1-37.       
3 D. Bambusi, S. Graffi and T. Paul, Normal forms and quantization formulae, Comm. Math. Phys., 207 (1999), 173-195.       
4 G. D. Birkhoff, Dynamical systems, American Mathematical Society Colloquium Publications, Vol. IX American Mathematical Society, Providence, R.I., 1966.       
5 M. Born, Vorlesungen über Atommechanik, Springer, Berlin, (1925). English translation: The mechanics of the atom, Ungar, New-York, 1927.
6 L. Charles and S. Vũ Ngoc, Spectral asymptotics via the semiclassical Birkhoff normal form, Duke Math. J., 143 (2008), 463-511.       
7 M. Degli Esposti, S. Graffi and J. Herczynski, Quantization of the classical Lie algorithm in the Bargmann representation, Annals of Physics, 209 (1991), 364-392.       
8 J. Écalle, Les Fonctions Résurgentes, Publ. Math. d'Orsay [Vol. 1: 81-05, Vol. 2: 81-06, Vol. 3: 85-05] 1981, 1985.
9 J. Écalle, Six lectures on Transseries, Analysable Functions and the Constructive Proof of Dulac's conjecture, in Bifurcations and periodic orbits of vector fields (Montreal, PQ, 1992) (ed. by D. Schlomiuk), NATO Adv. Sci. Inst. Ser.C Math. Phys. Sci., Kluwer Acad. Publ., Dordrecht, 408 (1993), 75-184.       
10 G. Folland, Harmonic Analysis in Phase Space, Annals of Mathematics Studies 122, Princeton University Press, 1989.       
11 G. Gallavotti, The Elements of Mechanics, Springer Verlag, 1983.       
12 S. Graffi and T. Paul, Schrödinger equation and canonical perturbation theory, Comm. Math. Phys., 108 (1987), 25-40.       
13 S. Graffi and T. Paul, Convergence of a quantum normal form and an exact quantization formula, Journ. Func. Analysis, 262 (2012), 3340-3393.       
14 V. Guillemin and T. Paul, Some remarks about semiclassical trace invariants and quantum normal forms, Communication in Mathematical Physics, 294 (2010), 1-19.       
15 W. Heisenberg, Matrix mechanik, Zeitscrift für Physik, 33 (1925), 879-893.
16 A. Iantchenko, J. Sjöstrand and M. Zworski, Birkhoff normal forms in semi-classical inverse problems, Math. Res. Lett., 9 (2002), 337-362.       
17 P. Lochak and C. Meunier, Multiphase Averaging for Classical Systems, Applied Mathematical Sciences, 72, Springer-Verlag, New York, 1988.       
18 I. Marcut, Rigidity around Poisson submanifolds, Acta Math., 213 (2014), 137-198.       
19 E. Miranda, P. Monnier and N. T. Zung, Rigidity of Hamiltonian actions on Poisson manifolds, Adv. Math., 229 (2012), 1136-1179.       
20 P. Monnier and N. T. Zung, Levi decomposition for smooth Poisson structures, J. Differential Geom., 68 (2004), 347-395.       
21 J. K. Moser and C. L. Siegel, Lectures on celestial mechanics, Classics in Mathematics. Springer Verlag, Berlin, 1995.       
22 T. Paul and D. Sauzin, Normalization in Lie algebras via mould calculus and applications, preprint, hal-01298047.
23 T. Paul and L. Stolovitch Quantum singular complete integrability, J. Funct. Analysis, 271 (2016), 1377-1433.       
24 R. Perez-Marco, Convergence or generic divergence of the Birkhoff normal form, Ann. of Math., 157 (2003), 557-574.       
25 H. Poincaré, Les méthodes nouvelles de la mécanique céleste, Volume 2, Gauthier-Villars, Paris, (1892), Blanchard, Paris, 1987.       
26 J. Sjöstrand, Semi-excited levels in non-degenerate potential wells, Asymptotic analysis, 6 (1992), 29-43.       
27 L. Stolovitch, Progress in normal form theory, Nonlinearity, 22 (2009), R77-R99.       
28 H. Weyl, Group theory and quantum mechanics, (1928 in German), Dover Publications, New-York, 1950.       
29 N. T. Zung, Convergence versus integrability in normal form theory, Ann. of Math., 161 (2005), 141-156.       

Go to top