`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

New convergence analysis for assumed stress hybrid quadrilateral finite element method
Pages: 2831 - 2856, Issue 7, September 2017

doi:10.3934/dcdsb.2017153      Abstract        References        Full text (512.0K)           Related Articles

Binjie Li - School of Mathematics, Sichuan University, Chengdu 610064, China (email)
Xiaoping Xie - School of Mathematics, Sichuan University, Chengdu 610064, China (email)
Shiquan Zhang - School of Mathematics, Sichuan University, Chengdu 610064, China (email)

1 D. Boffi, F. Brezzi and M. Fortin, Finite elements for the Stokes problem, in Mixed Finite Elements, Compatibility Conditions, and Applications (eds. D. Boffi and L. Gastaldi), Springer Berlin-Heidelberg, (2008), 45-100.
2 D. Braess, Enhanced assumed strain elements and locking in membrane problems, Computer Methods in Applied Mechanics and Engineering, 165 (1998), 155-174.       
3 D. Braess, C. Carstensen and B. D. Reddy, Uniform convergence and a posteriori error estimators for the enhanced strain finite element method, Numerische Mathematik, 96 (2004), 461-479.       
4 S. C. Brenner and L. Y. Sung, Linear finite element methods for planar linear elasticity, Mathematics of Computation, 59 (1992), 321-338.       
5 S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, $3^{rd}$ edition, Springer-Verlag, New York, 2008.       
6 G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976.       
7 V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer-Verlag, New York, 1986.       
8 T. H. H. Pian, Derivation of element stiffness matrices by assumed stress distributions, AIAA Journal, 7 (1964), 1333-1336.
9 T. H. H. Pian and K. Sumihara, Rational approach for assumed stress finite elements, International Journal for Numerical Methods in Engineering, 20 (1984), 1685-1695.
10 J. Pitk√§ranta and R. Stenberg, Error bounds for the approximation of the Stokes problem using bilinear/constant elements on irregular quadrilateral meshes, in The Mathematics of Finite Elements and Applications V, (de. Whiteman J), Academic Press, (1985), 325-334.       
11 J. Qin and S. Zhang, On the selective local stabilization of the mixed Q1-P0 element, International Journal for Numerical Methods in Fluids, 55 (2007), 1121-1141.       
12 B. D. Reddy and J. C. Simo, Stability and convergence of a class of enhanced strain methods, SIAM Journal on Numerical Analysis, 32 (1995), 1705-1728.       
13 Z. Shi, A convergence condition for the quadrilateral wilson element, Numerische Mathematik, 44 (1984), 349-361.       
14 J. C. Simo and M. S. Rifai, A class of mixed assumed strain methods and the method of incompatible modes, International Journal for Numerical Methods in Engineering, 29 (1990), 1595-1638.       
15 R. L. Taylor, E. L. Wilson and P. J. Beresford, A nonconforming element for stress analysis, International Journal for Numerical Methods in Engineering, 10 (1976), 1211-1219.
16 E. L. Wilson, R. L. Taylor, W. P. Doherty and J. Ghaboussi, Incompatible displacement models, in Numerical Computer Methods in Structural Mechanics, Academic Press, (1973), 43-57.
17 X. Xie and T. Zhou, Optimization of stress modes by energy compatibility for 4-node hybrid quadrilaterals, International Journal for Numerical Methods in Engineering, 59 (2004), 293-313.       
18 G. Yu, X. Xie and C. Carstensen, Uniform convergence and a posteriori error estimation for assumed stress hybrid finite element methods, Computer Methods in Applied Mechanics and Engineering, 200 (2011), 2421-2433.       
19 Z. Zhang, Analysis of some quadrilateral nonconforming elements for incompressible elasticity, SIAM Journal on Numerical Analysis, 34 (1997), 640-663.       
20 T. Zhou and X. Xie, A unified analysis for stress/strain hybrid methods of high performance, Computer Methods in Applied Mechanics and Engineering, 191 (2002), 4619-4640.       

Go to top