`a`
Mathematical Biosciences and Engineering (MBE)
 

A network model for control of dengue epidemic using sterile insect technique
Pages: 441 - 460, Issue 2, April 2018

doi:10.3934/mbe.2018020      Abstract        References        Full text (860.2K)           Related Articles

Arti Mishra - Department of Mathematics, Indian Institute of Technology Roorkee, Uttarakhand 247667, India (email)
Benjamin Ambrosio - Normandie Univ, UNIHAVRE, LMAH, FR-CNRS-3335, ISCN, 76600 Le Havre, France (email)
Sunita Gakkhar - Department of Mathematics, Indian Institute of Technology Roorkee, Uttarakhand 247667, India (email)
M. A. Aziz-Alaoui - Normandie Univ, UNIHAVRE, LMAH, FR-CNRS-3335, ISCN, 76600 Le Havre, France (email)

1 D. L. Chao and D. T. Dimitrov, Seasonality and the effectiveness of mass vaccination, Math Biosci Eng, 13 (2016), 249-259.       
2 G. Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse and J. M. Hyman, The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile, Math Biosci Eng, 10 (2013), 1455-1474.       
3 L. Esteva and H. M. Yang, Mathematical model to acess the control of aedes aegypti mosquitoes by sterile insect technique, Math. Biosci, 198 (2005), 132-147.       
4 T. P. O. Evans and S. R. Bishop, A spatial model with pulsed releases to compare strategies for the sterile insect technique applied to the mosquito aedes aegypti, Math. Biosci, 254 (2014), 6-27.       
5 Z. Feng and J. X. Velasco-Hernandez, Competitive exclusion in a vector-host model for the dengue fever, J. Math. Biol, 35 (1997), 523-544.       
6 D. J. Gubler, Dengue and dengue hemorrhagic fever: Its history and resurgence as a global public health problem, (eds. D. J. Gubler, G. Kuno), Dengue and Dengue Hemorrhagic Fever, New York: CAB International, 1997, 1-22.
7 D. J. Gubler, Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century, Trends Microbiol, 10 (2002), 100-103.
8 R.-W. S. Hendron and M. B. Bonsall, The interplay of vaccination and vector control on small dengue networks, J. Theor. Biol, 407 (2016), 349-361.       
9 H. Hughes and N. F. Britton, Modelling the use of wolbachia to control dengue fever transmission, Bull Math Biol, 75 (2013), 796-818.       
10 https://www.theguardian.com/world/2015/may/24/sterile-mosquitoes-released-in\\ chinato-fight-dengue-fever.
11 http://www.iflscience.com/health-and-medicine/gm-mosquitoes-set-be-released-brazil-combat-dengue-0/.
12 J. H. Jones, Notes on $R_{0}$, Department of Anthropological Sciences, Stanford University, 2007.
13 G. Knerer, C. S. M. Currie and S. C. Brailsford, Impact of combined vector-control and vaccination strategies on transmission dynamics of dengue fever: A model-based analysis, Health Care Manag Sci, 18 (2015), 205-217.
14 E. F. Knipling, Possibilities of insect control or eradication through the use of sexually sterile males, J. Econ. Entomol, 48 (1955), 459-462.
15 E. F. Knipling, The Basic Principles of Insect Population and Suppression and Management, USDA handbook. Washington, D.C., USDA, 1979.
16 E. F. Knipling, Sterile insect technique as a screwworm control measure: The concept and its development, Symposium on eradication of the screwworm from the United States and Mexico, Misc. Pub. Entomol. Soc. Am, 62 (1985), 4-7.
17 J. P. LaSalle, The Stability of Dynamical Systems, Regional Conf. Series Appl. Math., 25, SIAM,Philadelphia, 1976.       
18 A. Mishra and S. Gakkhar, The effects of awareness and vector control on two strains dengue dynamics, Appl. Math. Comput, 246 (2014), 159-167.       
19 A. M. P. Montoya, A. M. Loaiza and O. T. Gerard, Simulation model for dengue fever transmission with integrated control, Appl. Math. Sci, 10 (2016), 175-185.
20 D. Moulay, M. A. Aziz-Alaoui and Hee-Dae Kwon, Optimal control of chikungunya disease: Larvae reduction, treatment and prevention, Math Biosci Eng, 9 (2012), 369-392.       
21 D. Moulay, M. A. Aziz-Alaoui and M. Cadivel, The chikungunya disease: Modeling, vector and transmission global dynamics, Math. Biosci, 229 (2011), 50-63.       
22 L. Perko, Differential Equations and Dynamical Systems, Texts in Applied Mathematics, 7. Springer-Verlag, New York, 1991.       
23 H. S. Rodrigues, M. T. T. Monteiro and D. F. M. Torres, Vaccination models and optimal control strategies to dengue, Math. Biosci, 247 (2014), 1-12.       
24 S. Syafruddin and M. S. M. Noorani, SEIR model for transmission of dengue fever in Selangor Malaysia, International Journal of Modern Physics: Conference Series, 9 (2012), 380-389.
25 R. C. A. Thomé, H. M. Yang and L. Esteva, Optimal control of aedes aegypti mosquitoes by the sterile insect technique and insecticide, Math. Biosci, 223 (2010), 12-23.       
26 World Health Organization, Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control, Geneva: World Health Organization and the Special Programme for Research and Training in Tropical Diseases, 2009.
27 http://www.cdc.gov/dengue/epidemiology.

Go to top