Increasing stability for the inverse source scattering problem with multifrequencies
Pages: 745  759,
Issue 4,
August
2017
doi:10.3934/ipi.2017035 Abstract
References
Full text (364.0K)
Related Articles
Peijun Li  Department of Mathematics, Purdue University, West Lafayette, IN 47907, United States (email)
Ganghua Yuan  KLAS, School of Mathematics and Statistics, Northeast Normal University, Changchun, Jilin, 130024, China (email)
1 
S. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), R41R93. 

2 
C. A. Balanis, Antenna TheoryAnalysis and Design, Wiley, Hoboken, NJ, 2005. 

3 
G. Bao, P. Li, J. Lin and F. Triki, Inverse scattering problems with multifrequencies, Inverse Problems, 31 (2015), 093001, 21pp. 

4 
G. Bao, J. Lin and F. Triki, A multifrequency inverse source problem, J. Differential Equations, 249 (2010), 34433465. 

5 
G. Bao, J. Lin and F. Triki, Numerical solution of the inverse source problem for the Helmholtz equation with multiple frequency data, Contemp. Math., 548 (2011), 4560. 

6 
G. Bao, S. Lu, W. Rundell and B. Xu, A recursive algorithm for multifrequency acoustic inverse source problems, SIAM J. Numer. Anal., 53 (2015), 16081628. 

7 
J. Cheng, V. Isakov and S. Lu, Increasing stability in the inverse source problem with many frequencies, J. Differential Equations, 260 (2016), 47864804. 

8 
A. Devaney and G. Sherman, Nonuniqueness in inverse source and scattering problems, IEEE Trans. Antennas Propag., 30 (1982), 10341042. 

9 
M. Eller and N. P. Valdivia, Acoustic source identification using multiple frequency information, Inverse Problems, 25 (2009), 115005, 20pp. 

10 
K.H. Hauer, L. Kühn and R. Potthast, On uniqueness and nonuniqueness for current reconstruction from magnetic fields, Inverse Problems, 21 (2005), 955967. 

11 
V. Isakov, Inverse Source Problems, AMS, Providence, RI, 1990. 

12 
V. Isakov, Inverse Problems for Partial Differential Equations, SpringerVerlag, New York, 2006. 

13 
V. Isakov, Increasing stability in the continuation for the Helmholtz equation with variable coefficient, Contemp. Math., 426 (2007), 255267. 

14 
V. Isakov, Increasing stability for the Schödinger potential from the DirichlettoNeumann map, DCDSS, 4 (2011), 631640. 

15 
P. Li and G. Yuan, Stability on the inverse random source scattering problem for the onedimensional Helmholtz equation, J. Math. Anal. Appl., 450 (2017), 872887. 

16 
P. Stefanov and G. Uhlmann, Themoacoustic tomography arising in brain imaging, Inverse Problems, 27 (2011), 075011, 26pp. 

17 
G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. 

Go to top
