Inverse Problems and Imaging (IPI)

Increasing stability for the inverse source scattering problem with multi-frequencies
Pages: 745 - 759, Issue 4, August 2017

doi:10.3934/ipi.2017035      Abstract        References        Full text (364.0K)           Related Articles

Peijun Li - Department of Mathematics, Purdue University, West Lafayette, IN 47907, United States (email)
Ganghua Yuan - KLAS, School of Mathematics and Statistics, Northeast Normal University, Changchun, Jilin, 130024, China (email)

1 S. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), R41-R93.       
2 C. A. Balanis, Antenna Theory-Analysis and Design, Wiley, Hoboken, NJ, 2005.
3 G. Bao, P. Li, J. Lin and F. Triki, Inverse scattering problems with multi-frequencies, Inverse Problems, 31 (2015), 093001, 21pp.       
4 G. Bao, J. Lin and F. Triki, A multi-frequency inverse source problem, J. Differential Equations, 249 (2010), 3443-3465.       
5 G. Bao, J. Lin and F. Triki, Numerical solution of the inverse source problem for the Helmholtz equation with multiple frequency data, Contemp. Math., 548 (2011), 45-60.       
6 G. Bao, S. Lu, W. Rundell and B. Xu, A recursive algorithm for multifrequency acoustic inverse source problems, SIAM J. Numer. Anal., 53 (2015), 1608-1628.       
7 J. Cheng, V. Isakov and S. Lu, Increasing stability in the inverse source problem with many frequencies, J. Differential Equations, 260 (2016), 4786-4804.       
8 A. Devaney and G. Sherman, Nonuniqueness in inverse source and scattering problems, IEEE Trans. Antennas Propag., 30 (1982), 1034-1042.       
9 M. Eller and N. P. Valdivia, Acoustic source identification using multiple frequency information, Inverse Problems, 25 (2009), 115005, 20pp.       
10 K.-H. Hauer, L. Kühn and R. Potthast, On uniqueness and non-uniqueness for current reconstruction from magnetic fields, Inverse Problems, 21 (2005), 955-967.       
11 V. Isakov, Inverse Source Problems, AMS, Providence, RI, 1990.       
12 V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New York, 2006.       
13 V. Isakov, Increasing stability in the continuation for the Helmholtz equation with variable coefficient, Contemp. Math., 426 (2007), 255-267.       
14 V. Isakov, Increasing stability for the Schödinger potential from the Dirichlet-to-Neumann map, DCDS-S, 4 (2011), 631-640.       
15 P. Li and G. Yuan, Stability on the inverse random source scattering problem for the one-dimensional Helmholtz equation, J. Math. Anal. Appl., 450 (2017), 872-887.       
16 P. Stefanov and G. Uhlmann, Themoacoustic tomography arising in brain imaging, Inverse Problems, 27 (2011), 075011, 26pp.       
17 G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944.       

Go to top