`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

Generalized Lyapunov-Razumikhin method for retarded differential inclusions: Applications to discontinuous neural networks
Pages: 3591 - 3614, Issue 9, November 2017

doi:10.3934/dcdsb.2017181      Abstract        References        Full text (546.7K)           Related Articles

Zuowei Cai - College of Science, National University of Defense Technology, Changsha, Hunan 410073, China (email)
Jianhua Huang - College of Science, National University of Defense Technology, Changsha, 410073, China (email)
Lihong Huang - School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, Hunan 410114, China (email)

1 J. P. Aubin and H. Frankowska, Set-Valued Analysis, MA: Birkhauser, Boston, 1990.       
2 J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984.       
3 A. Baciotti and F. Ceragioli, Stability and stabilization of discontinuous systems and non-smooth Lyapunov function, ESAIM Control Optim. Calc. Var., 4 (1999), 361-376.       
4 M. Benchohra and S. K. Ntouyas, Existence results for functional differential inclusions, Electronic Journal of Differential Equations, 2001 (2001), 1-8.       
5 M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems, Theory and Applications, Springer-Verlag, London, 2008.       
6 V. I. Blagodat-skik and A. F. Filippov, Differential inclusions and optimal control, Proc. Steklov Inst. Math., 4 (1986), 199-259.
7 Z. W. Cai and L. H. Huang, Finite-time stabilization of delayed memristive neural networks: Discontinuous state-feedback and adaptive control approach, IEEE Trans. Neural Netw. Learn. Syst., PP (2017), 1-13.
8 Z. W. Cai and L. H. Huang, Novel adaptive control and state-feedback control strategies to finite-time stabilization of discontinuous delayed networks, IEEE Trans. Syst., Man, Cybern., Syst., PP (2017), 1-11.
9 Z. W. Cai, L. H. Huang, Z. Y. Guo and X. Y. Chen, On the periodic dynamics of a class of time-varying delayed neural networks via differential inclusions, Neural Networks, 33 (2012), 97-113.
10 E. K. P. Chong, S. Hui and S. H. Zak, An analysis of a class of neural networks for solving linear programming problems, IEEE Trans. Autom. Control, 44 (1999), 1995-2006.       
11 F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.       
12 F. H. Clarke, Y. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, New York, 1998.       
13 J. Cort├ęs, Discontinuous dynamical systems, IEEE Control Syst. Mag., 28 (2008), 36-73.       
14 A. F. Filippov, Differential Equations with Discontinuous Right-hand Side, in: Mathematics and Its Applications (Soviet Series), Kluwer Academic, Boston, 1988.       
15 M. Forti, M. Grazzini, P. Nistri and L. Pancioni, Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations, Physica D, 214 (2006), 88-99.       
16 M. Forti, P. Nistri and M. Quincampoix, Generalized neural network for nonsmooth nonlinear programming problems, IEEE Trans. Circuits Syst. I, 51 (2004), 1741-1754.       
17 Z. Y. Guo and L. H. Huang, Generalized Lyapunov method for discontinuous systems, Nonlinear Anal., 71 (2009), 3083-3092.       
18 Z. Y. Guo, J. Wang and Z. Yan, Attractivity analysis of memristor-based cellular neural networks with time-varying delays, IEEE Trans. Neural Netw. Learn. Syst., 25 (2014), 704-717.
19 G. Haddad, Topological properties of the sets of solutions for functional differential inclusions, Nonlinear Anal., 5 (1981), 1349-1366.       
20 G. Haddad, Monotone viable trajectories for functional differential inclusions, J. Differential Equations, 42 (1981), 1-24.       
21 J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.       
22 H. Hermes, Discontinuous vector fields and feedback control, in: Differential Equations and Dynamical Systems, Academic, New York, (1967), 155-165.       
23 S. H. Hong, Existence results for functional differential inclusions with infinite delay, Acta Math. Sin., 22 (2006), 773-780.       
24 L. H. Huang, Z. Y. Guo and J. F. Wang, Theory and Applications of Differential Equations with Discontinuous Right-hand Sides (in Chinese), Science Press, Beijing, 2011.
25 M. P. Kennedy and L. O. Chua, Neural networks for nonlinear programming, IEEE Trans. Circuits Syst. I, 35 (1988), 554-562.       
26 N. N. Krasovskii, Stability of Motion. Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay, CA: Stanford Univ. Press, Stanford, 1963. (Transl. from Russian by J. L. Brenner).       
27 K. Z. Liu, X. M. Sun, J. Liu and A. R. Teel, Stability theorems for delay differential inclusions, IEEE Trans. Autom. Control, 61 (2016), 3215-3220.       
28 K. Z. Liu and X. M. Sun, Razumikhin-type theorems for hybrid system with memory, Automatica, 71 (2016), 72-77.       
29 X. Y. Liu, J. D. Cao, W. W. Yu and Q. Song, Nonsmooth finite-time synchronization of switched coupled neural networks, IEEE Trans. Cybern., 46 (2016), 2360-2371.
30 A. C. J. Luo, Discontinuous Dynamical Systems on Time-varying Domains, Higher Education Press, Beijing, 2009.       
31 V. Lupulescu, Existence of solutions for nonconvex functional differential inclusions, Electronic Journal of Differential Equations, 2004 (2004), 1-6.       
32 B. E. Paden and S. S. Sastry, A calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulator, IEEE Trans. Circuits Syst., 34 (1987), 73-82.       
33 T. T. Su and X. S. Yang, Finite-time synchronization of competitive neural networks with mixed delays, Discrete & Continuous Dynamical Systems-Series B, 21 (2016), 3655-3667.       
34 A. Surkov, On the stability of functional-differential inclusions with the use of invariantly differentiable Lyapunov functionals, Differential Equations, 43 (2007), 1079-1087.       
35 V. I. Utkin, Variable structure systems with sliding modes, IEEE Trans. Automat. Contr., 22 (1977), 212-222.       
36 K. N. Wang and A. N. Michel, Stability analysis of differential inclusions in banach space with application to nonlinear systems with time delays, IEEE Trans. Circuits Syst. I, 43 (1996), 617-626.       
37 L. Wang and Y. Shen, Finite-time stabilizability and instabilizability of delayed memristive neural networks with nonlinear discontinuous controller, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), 2914-2924.       
38 S. P. Wen, T. W. Huang, Z. G. Zeng, Y. R. Chen and P. Li, Circuit design and exponential stabilization of memristive neural networks, Neural Networks, 63 (2015), 48-56.
39 A. L. Wu, S. P. Wen and Z. G. Zeng, Synchronization control of a class of memristor-based recurrent neural networks, Information Sciences, 183 (2012), 106-116.       
40 C. J. Xu, P. L. Li and Y. C. Pang, Exponential stability of almost periodic solutions for memristor-based neural networks with distributed leakage delays, Neural Comput., 28 (2016), 2726-2756.
41 X. S. Yang, D. W. C. Ho, J. Q. Lu and Q. Song, Finite-time cluster synchronization of T-S fuzzy complex networks with discontinuous subsystems and random coupling delays, IEEE Trans. Fuzzy Syst., 23 (2015), 2302-2316.
42 X. S. Yang and D. W. C. Ho, Synchronization of delayed memristive neural networks: Robust analysis approach, IEEE Trans. Cybern., 46 (2016), 3377-3387.
43 B. Zhou and A. V. Egorov, Razumikhin and Krasovskii stability theorems for time-varying time-delay systems, Automatica, 71 (2016), 281-291.       

Go to top