Discrete and Continuous Dynamical Systems - Series B (DCDS-B)

Stability of dislocation networks of low angle grain boundaries using a continuum energy formulation
Page number are going to be assigned later 2017

doi:10.3934/dcdsb.2017183      Abstract        References        Full text (634.8K)      

Yang Xiang - Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (email)
Xiaodong Yan - Department of Mathematics, University of Connecticut, 341 Mans eld Road, Storrs, CT 06269, United States (email)

1 A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T. G. Pierce and V. V. Bulatov, Enabling strain hardening simulations with dislocation dynamics, Modell. Simul. Mater. Sci. Eng., 15 (2007), 553-595.
2 Á. Bényi and T. Oh, The Sobolev inequality on the torus revisited, Publicationes mathematicae, 83 (2013), 359-374.       
3 B. A. Bilby, Bristol Conference Report on Defects in Crystalline Materials, Physical Society, London, 1955, 123.
4 F. C. Frank, The resultant content of dislocations in an arbitrary intercrystalline boundary, in Symposium on the Plastic Deformation of Crystalline Solids, Office of Naval Research, Pittsburgh, 1950, 150-154.
5 N. M. Ghoniem, S. H. Tong and L. Z. Sun, Parametric dislocation dynamics: A thermodynamics-based approach to investigations of mesoscopic plastic deformation, Phys. Rev. B, 61 (2000), 913-927.
6 E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, American Mathematical Society, 1999.       
7 C. Herring, Surface tension as a motivation for sintering, Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids, 1999, 143-179.
8 J. P. Hirth and J. Lothe, Theory of Dislocations, $2^{nd}$ edition, John Wiley, New York, 1982.
9 L. P. Kubin, G. Canova, M. Condat and B. Devincre, Dislocation microstructures and plastic flow: A 3d simulation, Solid State Phenomena, 23/24 (1992), 455-472.
10 A. T. Lim, D. J. Srolovitz and M. Haataja, Low-angle grain boundary migration in the presence of extrinsic dislocations, Acta Mater., 57 (2009), 5013-5022.
11 A. T. Lim, M. Haataja, W. Cai and D. J. Srolovitz, Stress-driven migration of simple low-angle mixed grain boundaries, Acta Mater., 60 (2012), 1395-1407.
12 A. A. Pihlaja, Modeling Grain Boundary Structures Using Energy Minimization, Ph.D. thesis, New York University, 2000.       
13 S. S. Quek, Y. Xiang and D. J. Srolovitz, Loss of interface coherency around a misfitting spherical inclusion, Acta Mater., 59 (2011), 5398-5410.
14 W. Read and W. Shockley, Dislocation models of crystal grain boundaries, Phys. Rev., 78 (1950), 275-289.
15 Strichartz, Improved sobolev inequalities, Trans. Amer. Math. Soc. 279 (1983), 397-409.       
16 A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials, Clarendon Press, Oxford, 1995.
17 A. P. Sutton and V. Vitek, On the structure of tilt grain boundaries in cubic metals I. Symmetical tilt boundaries, Philos. Trans. Roy. Soc. Lond. A, 309 (1983), 1-36.
18 Y. Xiang, Modeling dislocations at different scales, Commun. Comput. Phys., 1 (2006), 383-424.
19 Y. Xiang, L. T. Cheng, D. J. Srolovitz and W. E, A level set method for dislocation dynamics, Acta Mater., 51 (2003), 5499-5518.
20 L. C. Zhang, Y. J. Gu and Y. Xiang, Energy of low angle grain boundaries based on continuum dislocation structure, Acta Mater., 126 (2017), 11-24.
21 X. H. Zhu and Y. Xiang, Stabilizing force on perturbed grainboundaries using dislocation model, Scripta Mater., 64 (2011), 5-8.
22 X. H. Zhu and Y. Xiang, Continuum frmework for dislocation structure, energy and dynamics of dislocation arrays and low angle grain boundaries, J. Mech. Phys. Solid, 69 (2014), 175-194.       

Go to top