Discrete and Continuous Dynamical Systems - Series B (DCDS-B)

Effect of perturbation in the numerical solution of fractional differential equations
Page number are going to be assigned later 2017

doi:10.3934/dcdsb.2017188      Abstract        References        Full text (420.5K)      

Roberto Garrappa - Dipartimento di Matematica, Università degli Studi di Bari, Via E. Orabona 4, 70125 Bari, Italy (email)
Eleonora Messina - Dipartimento di Matematica e Applicazioni, Università degli Studi di Napoli "Federico II", Via Cintia, I-80126 Napoli, Italy (email)
Antonia Vecchio - C.N.R. National Research Council of Italy, Institute for Computational Application "Mauro Picone", Via P. Castellino, 111 - 80131 Napoli, Italy (email)

1 T. M. Atanacković, S. Pilipović, B. Stanković and D. Zorica, Fractional Calculus with Applications in Mechanics, Mechanical Engineering and Solid Mechanics Series. ISTE, London; John Wiley & Sons, Inc., Hoboken, NJ, 2014. Wave propagation, impact and variational principles.
2 L. C. Becker, Resolvents and solutions of weakly singular linear Volterra integral equations, Nonlinear Anal., 74 (2011), 1892-1912.       
3 H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, volume 15 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2004.       
4 H. Brunner and P. J. van der Houwen, The Numerical Solution of Volterra Equations, volume 3 of CWI Monographs, North-Holland Publishing Co., Amsterdam, 1986.       
5 E. Capelas de Oliveira and J. A. T. Machado, A review of definitions for fractional derivatives and integral, Math. Probl. Eng., 2014 (2014), Art. ID 238459, 6 pp.       
6 R. Caponetto, G. Dongola, L. Fortuna and I. Petrćš, Fractional Order Systems: Modeling and Control Applications, volume 72 of Series on Nonlinear Science, Series A, World Scientific, Singapore, 2010.
7 M. Concezzi, R. Garra and R. Spigler, Fractional relaxation and fractional oscillation models involving Erdélyi-Kober integrals, Fract. Calc. Appl. Anal., 18 (2015), 1212-1231.       
8 F. R. de Hoog and R. S. Anderssen, Kernel perturbations for a class of second-kind convolution Volterra equations with non-negative kernels, Appl. Math. Lett., 25 (2012), 1222-1225.       
9 K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, 2010.       
10 K. Diethelm, N. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), 3-22. Fractional order calculus and its applications.       
11 K. Diethelm, N. J. Ford and A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), 31-52.       
12 J. Dixon, On the order of the error in discretization methods for weakly singular second kind Volterra integral equations with nonsmooth solutions, BIT, 25 (1985), 624-634.       
13 R. Garra, R. Gorenflo, F. Polito and Ž. Tomovski, Hilfer-Prabhakar derivatives and some applications, Appl. Math. Comput., 242 (2014), 576-589.       
14 R. Garrappa, Trapezoidal methods for fractional differential equations: Theoretical and computational aspects, Math. Comput. Simulation, 110 (2015), 96-112.       
15 R. Garrappa, Grünwald-Letnikov operators for fractional relaxation in Havriliak-Negami models, Commun. Nonlinear Sci. Numer. Simul., 38 (2016), 178-191.       
16 R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics. Springer, New York, 2014.       
17 A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, volume 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006.       
18 F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010. An introduction to mathematical models.       
19 G. Pagnini, Erdélyi-Kober fractional diffusion, Fract. Calc. Appl. Anal., 15 (2012), 117-127.       
20 I. Podlubny, Fractional Differential Equations, volume 198 of Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA, 1999. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications.       
21 V. E. Tarasov, Fractional Dynamics, Nonlinear Physical Science. Springer, Heidelberg; Higher Education Press, Beijing, 2010. Applications of fractional calculus to dynamics of particles, fields and media.       
22 G. Teschl, Ordinary Differential Equations and Dynamical Systems, volume 140 of Graduate Studies in Mathematics, American Mathematical Society, Providence, 2012.       
23 V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers, Volume II, Nonlinear Physical Science. Higher Education Press, Beijing; Springer, Heidelberg, 2013. Applications.       
24 A. Young, Approximate product-integration, Proc. Roy. Soc. London Ser. A., 224 (1954), 552-561.       

Go to top