`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

Analysis of a free boundary problem for tumor growth with Gibbs-Thomson relation and time delays
Page number are going to be assigned later 2017

doi:10.3934/dcdsb.2017213      Abstract        References        Full text (390.7K)      

Shihe Xu - School of Mathematics and Statistics, Zhaoqing University, Zhaoqing, Guangdong 526061, China (email)
Meng Bai - School of Mathematics and Statistics, Zhaoqing University, Zhaoqing, Guangdong 526061, China (email)
Fangwei Zhang - College of Transport and Communications, Shanghai Maritime University, Shanghai 201306, China (email)

1 M. Bodnar, The nonnegativity of solutions of delay differential equations, Appl. Math. Lett., 13 (2000), 91-95.       
2 M. Bodnar and U. Foryś, Time delay in necrotic core formation, Math. Biosci. Eng., 2 (2005), 461-472.       
3 H. Byrne, The effect of time delays on the dynamics of avascular tumor growth, Math. Biosci., 144 (1997), 83-117.       
4 H. Byrne and M. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors, Math. Biosci., 130 (1995), 151-181.
5 H. Byrne and M. Chaplain, Growth of necrotic tumors in the presence and absence of inhibitors, Math. Biosci., 135 (1996), 187-216.
6 H. M. Byrne et al., Modelling aspects of cancer dynamics: A review, Trans. Royal Soc. A, 364 (2006), 1563-1578.       
7 S. Cui, Fromation of necrotic cores in the growth of tumors: Analytic results, Aata. Math. Scientia, 26 (2006), 781-796.       
8 S. Cui and A. Friedman, Analysis of a mathematical model of the effect of inhibitors on the growth of tumors, Math. Biosci., 164 (2000), 103-137.       
9 S. Cui, Analysis of a free boundary problem modeling tumor growth, Acta. Math. Sinica., 21 (2005), 1071-1082.       
10 S. Cui and S. Xu, Analysis of mathematical models for the growth of tumors with time delays in cell proliferation, J. Math. Anal. Appl., 336 (2007), 523-541.       
11 U. Foryś and M. Bodnar, Time delays in proliferation process for solid avascular tumour, Math. Comput. Modelling, 37 (2003), 1201-1209.
12 U. Foryś and A. Mokwa-Borkowska, Solid tumour growth analysis of necrotic core formation, Math. Comput. Modelling, 42 (2005), 593-600.       
13 U. Foryś and M. Kolev, Time delays in proliferation and apoptosis for solid avascular tumour, Mathematical Modelling of Population Dynamics, 63 (2004), 187-196.       
14 A. Friedman and F. Reitich, Analysis of a mathematical model for the growth of tumors, J. Math. Biol., 38 (1999), 262-284.       
15 H. Greenspan, Models for the growth of solid tumor by diffusion, Stud. Appl. Math., 51 (1972), 317-340.
16 H. Greenspan, On the growth and stability of cell cultures and solid tumors, J. Theor. Biol., 56 (1976), 229-242.       
17 J. Hale, Theory of Functional Differential Equations, $2^{nd}$ edition, Springer-Verlag, New York, 1977.       
18 J. Wu, Stationary solutions of a free boundary problem modeling the growth of tumors with Gibbs-Thomson relation, J. Differential Equations, 260 (2016), 5875-5893.       
19 J. Wu, Analysis of a mathematical model for tumor growth with Gibbs-Thomson relation, J. Math. Anal. Appl., 450 (2017), 532-543.       
20 J. Wu and F. Zhou, Asymptotic behavior of solutions of a free boundary problem modeling tumor spheroid with Gibbs-Thomson relation, J. Differential Equations, 262 (2017), 4907-4930.       
21 S. Xu, Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients, Discrete and Contin. Dyn. Syst. B., 21 (2016), 997-1008.       
22 S. Xu, M. Bai and X. Q. Zhao, Analysis of a solid avascular tumor growth model with time delays in proliferation process, J. Math. Anal. Appl., 391 (2012), 38-47.       

Go to top