On uniqueness of a weak solution of onedimensional concrete carbonation problem
Pages: 1345  1365,
Volume 29,
Issue 4,
April
2011
doi:10.3934/dcds.2011.29.1345 Abstract
References
Full text (372.1K)
Related Articles
Toyohiko Aiki  Department of Mathematics, Faculty of Education, Gifu University, Yanagido 11, Gifu, 5011193, Japan (email)
Adrian Muntean  CASA  Centre for Analysis, Scientific computing and Applications, Department of Mathematics and Computer Science, Institute of Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, Netherlands (email)
1 
T. Aiki, Weak solutions for Falk's model of shape memory alloys, Math. Methods Appl. Sci., 23 (2000), 299319. 

2 
T. Aiki, Uniqueness for multidimensional Stefan problems with nonlinear boundary conditions described by maximal monotone operators, Differential Integral Equations, 15 (2002), 9731008. 

3 
T. Aiki and A. Muntean, Existence and uniqueness of solutions to a mathematical model predicting service life of concrete structures, Adv. Math. Sci. Appl., 19 (2009), 109129. 

4 
T. Aiki and A. Muntean, Large time behavior of solutions to a concrete carbonation problem, Commun. Pure Appl. Anal., 9 (2010), 11171129. 

5 
T. Aiki and A. Muntean, Mathematical treatment of concrete carbonation process, in "Current Advances in Nonlinear Analysis and Related Topics," GAKUTO Internat. Ser. Math. Sci. Appl., 32, Gakkotosho, Tokyo, (2010), 231238. 

6 
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and QuasiLinear Equations of Parabolic Type," Transl. Math. Monograph, 23, Amer. Math. Soc., Providence, R. I., 1968. 

7 
J. L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires," Dunod, Paris, 1969. 

8 
A. Muntean, "A MovingBoundary Problem: Modeling, Analysis and Simulation of Concrete Carbonation," Ph.D. Thesis, Faculty of Mathematics, University of Bremen, Germany, Cuvillier Verlag, Göttingen, 2006. 

9 
A. Muntean and M. Böhm, A movingboundary problem for concrete carbonation: global existence and uniqueness of solutions, Journal of Mathematical Analysis and Applications, 350 (2009), 234251. 

10 
M. Niezgódka and I. Pawlow, A generalized Stefan problem in several space variables, Applied Math. Opt., 9 (1983), 193224. 

Go to top
