`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

On uniqueness of a weak solution of one-dimensional concrete carbonation problem
Pages: 1345 - 1365, Volume 29, Issue 4, April 2011

doi:10.3934/dcds.2011.29.1345      Abstract        References        Full text (372.1K)           Related Articles

Toyohiko Aiki - Department of Mathematics, Faculty of Education, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan (email)
Adrian Muntean - CASA - Centre for Analysis, Scientific computing and Applications, Department of Mathematics and Computer Science, Institute of Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, Netherlands (email)

1 T. Aiki, Weak solutions for Falk's model of shape memory alloys, Math. Methods Appl. Sci., 23 (2000), 299-319.       
2 T. Aiki, Uniqueness for multi-dimensional Stefan problems with nonlinear boundary conditions described by maximal monotone operators, Differential Integral Equations, 15 (2002), 973-1008.       
3 T. Aiki and A. Muntean, Existence and uniqueness of solutions to a mathematical model predicting service life of concrete structures, Adv. Math. Sci. Appl., 19 (2009), 109-129.       
4 T. Aiki and A. Muntean, Large time behavior of solutions to a concrete carbonation problem, Commun. Pure Appl. Anal., 9 (2010), 1117-1129.       
5 T. Aiki and A. Muntean, Mathematical treatment of concrete carbonation process, in "Current Advances in Nonlinear Analysis and Related Topics," GAKUTO Internat. Ser. Math. Sci. Appl., 32, Gakkotosho, Tokyo, (2010), 231-238.
6 O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasi-Linear Equations of Parabolic Type," Transl. Math. Monograph, 23, Amer. Math. Soc., Providence, R. I., 1968.       
7 J. L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires," Dunod, Paris, 1969.       
8 A. Muntean, "A Moving-Boundary Problem: Modeling, Analysis and Simulation of Concrete Carbonation," Ph.D. Thesis, Faculty of Mathematics, University of Bremen, Germany, Cuvillier Verlag, Göttingen, 2006.
9 A. Muntean and M. Böhm, A moving-boundary problem for concrete carbonation: global existence and uniqueness of solutions, Journal of Mathematical Analysis and Applications, 350 (2009), 234-251.       
10 M. Niezgódka and I. Pawlow, A generalized Stefan problem in several space variables, Applied Math. Opt., 9 (1983), 193-224.       

Go to top