`a`
Communications on Pure and Applied Analysis (CPAA)
 

Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks
Pages: 667 - 686, Volume 10, Issue 2, March 2011

doi:10.3934/cpaa.2011.10.667      Abstract        References        Full text (395.6K)           Related Articles

Mokhtar Kirane - Mathématiques, Image et Applications Pôle Sciences et Technologies, Université de la Rochelle, France (email)
Belkacem Said-Houari - Department of Mathematics and Statistics, University of Konstanz, 78457 Konstanz, Germany (email)
Mohamed Naim Anwar - United Arab Emirates University, P.O. Box 17551 Al Ain, United Arab Emirates (email)

1 C. Abdallah, P. Dorato, J. Benitez-Read and R. Byrne, Delayed positive feedback can stabilize oscillatory system, ACC. San Francisco, (1993), 3106-3107.
2 R. Datko, J. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156.       
3 T. Kato, Linear and quasilinear equations of evolution of hyperbolic type, C.I.M.E., II (1976), 125-191.
4 J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control. Optim., 25 (1987), 1417-1429.       
5 S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.       
6 S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Diff. Int. Equs., 21 (2008), 935-958.       
7 S. Nicaise, C. Pignotti and J. Valein, Exponential stability of the wave equation with boundary time-varying delay, submitted.
8 S. Nicaise and J. Valein, Stabilization of second order evolution equations with unbounded feedback with delay, ESAIM Control. Optim. Calc. Var., 16 (2010), 420-456.       
9 S. Nicaise, J. Valein and E. Fridman, Stabilization of the heat and the wave equations with boundary time-varying delays, DCDS-S., 2 (2009), 559-581.       
10 C. A. Raposo, J. Ferreira, M. L. Santos and N. N. O. Castro, Expoenetial stability for the Timoshenko system with two weak dampings, Appl. Math. Letters, 18 (2005), 535-541.       
11 J. E. Munoz Rivera and R. Racke, Timoshenko systems with indefinite damping, J. Math. Anal. Appl., 341 (2008), 1068-1083.       
12 B. Said-Houari and Y. Laskri, A stability result of a timoshenko system with a delay term in the internal feedback, Appl. Math. Comput., In Press; doi:10.1016/j.amc.2010.08.021.
13 D-H. Shi and D-X. Feng, Exponential decay of Timoshenko beam with locally distributed feedback, IMA J. Math. Cont. Inf., 18 (2001), 395-403.       
14 A. Soufyane and A. Wehbe, Exponential stability for the Timoshenko beam by a locally distributed damping, Electron. J. Differential Equations, 29 (2003), 1-14.       
15 I. H. Suh and Z. Bien, Use of time delay action in the controller design, IEEE Trans. Automat. Control, 25 (1980), 600-603.
16 S. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismaticbars, Philisophical. Magazine, 41 (1921), 744-746.
17 C. Q. Xu, S. P. Yung and L. K. Li, Stabilization of the wave system with input delay in the boundary control, ESAIM: Control Optim. Calc. Var., 12 (2006), 770-785.       

Go to top